
Tor:
An Anonymizing Overlay

Network for TCP

Roger Dingledine
The Free Haven Project

http://tor.freehaven.net/
http://tor.eff.org/

December 28, 21C3 2004

Talk Outline

 Motivation: Why anonymous communication?
− Personal privacy

− Corporate and governmental security

 Characterizing anonymity: Properties and Types
 Mixes and proxies: Anonymity building blocks
 Onion Routing: Lower latency, Higher Security
 Features of Tor: 2nd Generation Onion Routing
 Hidden Servers and Rendezvous Points
 Summary and Future Work

 In a Public Network (Internet):
 Packet (message) headers identify recipients
 Packet routes can be tracked

Encryption does not hide routing information.

Initiator

Public Network

Responder

Public Networks are Vulnerable to
Traffic Analysis

Who Needs Anonymity?

 Political Dissidents, Whistleblowers
 Censorship resistant publishers
 Socially sensitive communicants:

− Chat rooms and web forums for abuse survivors, people with
illnesses

 Law Enforcement:
− Anonymous tips or crime reporting

− Surveillance and honeypots (sting operations)

 Corporations:
− Hiding collaborations of sensitive business units or partners

− Hide procurement suppliers or patterns

− Competitive analysis

 You:
− Where are you sending email (who is emailing you)

− What web sites are you browsing

− Where do you work, where are you from

− What do you buy, what kind of physicians do you visit,
what books do you read, ...

Who Needs Anonymity?

 Government

Who Needs Anonymity?

 Open source intelligence gathering
− Hiding individual analysts is not enough

− That a query was from a govt. source may be sensitive
 Defense in depth on open and classified networks

− Networks with only cleared users (but a million of them)
 Dynamic and semitrusted international coalitions

− Network can be shared without revealing existence or
amount of communication between all parties

Government Needs Anonymity?
Yes, for...

Anonymity Loves Company

 You can't be anonymous by yourself
− Can have confidentiality by yourself

 A network that protects only DoD network users won't hide
that connections from that network are from Defense Dept.

 You must carry traffic for others to protect yourself

 But those others don't want to trust their traffic to just one
entity either. Network needs distributed trust.

 Security depends on diversity and dispersal of network.

Who Needs Anonymity?

 And yes criminals

Who Needs Anonymity?

 And yes criminals

But they already have it.
We need to protect everyone else.

Anonymous From Whom?
Adversary Model

 Recipient of your message
 Sender of your message

=> Need Channel and Data Anonymity

 Observer of network from outside
 Network Infrastructure (Insider)

=> Need Channel Anonymity

 Note: Anonymous authenticated communication makes
perfect sense

 Communicant identification should be inside the basic
channel, not a property of the channel

Focus of Tor is anonymity of the
communication pipe,

not what goes through it

Grab the code and try it out

 Published under the BSD license
 Not encumbered by Onion Routing patent
 Works on Linux, BSD, OS X, Solaris, Win32
 Packages: Debian, Gentoo, *BSD, Win32
 Runs in user space, no need for kernel mods

or root

http://tor.eff.org/

How Do You Get Communication
Anonymity?

 Many technical approaches
 Overview of two extensively used approaches

− Mixes
− Proxies

message 1

message 2

message 3

message 4

Randomly permutes and decrypts inputs

Mix

What does a mix do?

message 2

Key property: Adversary can't tell which ciphertext

corresponds to a given message

?

What does a mix do?

Basic Mix (Chaum ‘81)

Server 1 Server 2 Server 3

PK1 PK2
PK3

Encryption of Message

PK1 PK2
PK3

message

Ciphertext = EPK1[EPK2[EPK3[message]]]

Server 1 Server 2 Server 3

m1

m2

m3

m2

m3

m1

decrypt
and

permute

m2

m1

m3

decrypt
and

permute

decrypt
and

permute

m2

m3

m1

Basic Chaum-type Mix

Server 1 Server 2 Server 3

m3
?

One honest server preserves privacy

What if you need quick interaction?

 Web browsing, Remote login, Chat, etc.

 Mixnets introduced for email and other high latency apps

 Each layer of message requires
expensive public-key crypto

• Channels appear to come from proxy, not true originator
• Appropriate for Web connections, etc.:

 SSL, TLS, SSH (lower cost symmetric encryption)
• Examples: The Anonymizer
• Advantages: Simple, Focuses lots of traffic for more anonymity
• Main Disadvantage: Single point of failure, compromise, attack

anonymizing proxyanonymizing proxy

Basic Anonymizing Proxy

Onion Routing
Traffic Analysis Resistant Infrastructure

 Main Idea: Combine Advantages of mixes and proxies
 Use (expensive) public-key crypto to establish circuits
 Use (cheaper) symmetric-key crypto to move data

− Like SSL/TLS based proxies

 Distributed trust like mixes
 Related Work (some implemented, some just designs):

− ISDN Mixes

− Crowds, JAP Webmixes, Freedom Network

− Tarzan, Morphmix

Responder

Client
Initiator

Network Structure

Internet

 Onion routers form an overlay network
− Clique topology (for now)

− TLS encrypted connections

 Proxy interfaces between client machine and onion routing
overlay network

Tor

Tor

The Onion Routing

Tor

Tor's Onion Routing

Client
Initiator

Tor Circuit Setup
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1

Client
Initiator

Tor Circuit Setup
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2

Client
Initiator

Tor Circuit Setup
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Client
Initiator

Tor Circuit Usage
• Client Proxy establishes session key + circuit w/ Onion Router 1Onion Router 1
• Proxy tunnels through that circuit to extend to Onion Router 2Onion Router 2
• Etc
• Client applications connect and communicate over Tor circuit

Where do I go to connect to the
network?

 Directory Servers
− Maintain list of which onion routers are up, their locations,

current keys, exit policies, etc.

− Directory server keys ship with the code

− Control which nodes can join network
 Important to guard against Sybil attack and related

problems

− These directories are cached and served by other servers, to
reduce bottlenecks

Some Tor Properties

 Simple modular design, Restricted ambitions
− 26K lines of C code

− Even servers run in user space, no need to be root

− Just anonymize the pipe
 Can use, e.g., privoxy as front end if desired to anonymize data

− SOCKS compliant TCP: includes Web, remote login, mail,
chat, more

 No need to build proxies for every application

− Flexible exit policies, each node chooses what
applications/destinations can emerge from it

Some Tor Properties

 Lots of supported platforms:
 Linux, BSD, MacOS X, Solaris, Windows
 Many TCP streams (application connections) share one

anonymous circuit
− Less public-key encryption overhead than prior designs

− Reduced anonymity danger from opening many circuits

− (but we rotate away from used circuits after a while)

More Tor Properties

 Bandwidth rate limiting
− Limits how much one OR can send to a neighbor

− Token bucket approach limits average but permits bursts

 Circuit and stream level throttling
− Controls congestion

− Mitigates denial of service that a single circuit can do

 Stream integrity checks
− Onion Routing uses stream ciphers

− We must prevent, e.g., reasonable guess attack

XOR out 'dir ' and XOR in 'rm *'

 E ach layer o f the on ion identifies the next hop in

the rou te and conta ins the cryp tograph ic keys to

be used a t tha t node.

A

B C F

D E

Generations 0 and 1 Circuit Setup

More Tor Advantages

 No need to keep track of onions to prevent replay
− There are no onions anymore

− Even a replayed create cell will result in a new session key
at an honest onion router

 Perfect Forward Secrecy
− Storing all traffic sent to a node and later breaking its public

key will not reveal encrypted content

Numbers and Performance

 Running since October 2003
• 50 nodes scattered through US (30) and outside (20)
• Actually, more like 70-90 as of last week.
• (Tens of) thousands(?) of users
• Nodes process 1-20 GB / day application cells
• Network has never been down

Number of running routers

Total traffic through Tor network

Latency Tests

 4 node test network on single heavily loaded 1 GHz Athlon
− Download 60MB file (108 times over 54 hours)

− Avg. 300 sec/download vs. 210 sec/download without Tor
 Beta network test

− Download cnn.com (55KB)

− Median of 2.7 sec through Tor vs. 0.3 sec direct

 Fastest through Tor was 0.6 sec

Location Hidden Servers

 Alice can connect to Bob's server without knowing where it
is or possibly who he is

 Can provide servers that
− Are accessible from anywhere

− Resist censorship

− Require minimal redundancy for resilience in denial of service
(DoS) attack

− Can survive to provide selected service even during full
blown distributed DoS attack

− Resistant to physical attack (you can't find them)

 How is this possible?

Location Hidden Servers
1. Server Bob creates onion routes to Introduction Points (IP)

Server
Bob

Introduction
Points

Client
Alice

Location Hidden Servers
1. Server Bob creates onion routes to Introduction Points (IP)

2. Bob gets Service Descriptor incl. Intro Pt. addresses to Alice

 - In this example gives them to Service Lookup Server

Server
Bob

Introduction
PointsService

Lookup
Server

Bob's Service

Client
Alice

Location Hidden Servers

2'. Alice obtains Service Descriptor (including Intro Pt. address) at
Lookup Server

Service
Lookup
Server

Server
Bob

Introduction
PointsBob's Service

Client
Alice

Location Hidden Servers

3. Client Alice creates onion route to Rendezvous Point (RP)

Server
Bob

Introduction
Points

Rendezvous
Point

Client
Alice

Location Hidden Servers

3. Client Alice creates onion route to Rendezvous Point (RP)

4. Alice sends RP addr. and any authorization through IP to Bob

Server
Bob

Introduction
Points

Rendezvous
Point

Client
Alice

Location Hidden Servers

5. If Bob chooses to talk to Alice, connects to Rendezvous Point

Server
Bob

Introduction
Points

Rendezvous
Point

Client
Alice

Location Hidden Servers

5. If Bob chooses to talk to Alice, connects to Rendezvous Point

6. Rendezvous point mates the circuits from Alice and Bob

Server
Bob

Introduction
Points

Rendezvous
Point

How do we compare Tor's security?

Assume the adversary owns c of the n nodes.

 (he can choose which)

What's the chance for a random Alice talking to a random Bob
that the adversary learns they are linked?

 Freedom, Tor: c^2/n^2 (10 of 100 => 1%)
 Peekabooty, six-four, etc: c/n (10 of 100 => 10%)
 Jap (one cascade): 1 if c>1
 Jap (many cascades): c^2/(n/2)^2 (10 of 100 => 4%)
 Anonymizer: 1 if c>0

Tradeoffs

 Low-latency (Tor) vs. high-latency (Mixminion)
 Packet-level vs stream-level capture
 Padding vs. no padding (mixing, traffic shaping)
 UI vs. no UI
 AS-level paths and proximity issues
 Incentives to run servers (volunteers, pay; security)
 Incentives to allow exits
 Enclave-level onion routers / proxies / helper nodes
 Path length? (3 hops, don't reuse nodes)
 P2P network vs. static network

Future Work

 Design and build distributed directory management?
 Restricted-route (non-clique) topology

To scale beyond hundreds of nodes and 10Ks of users

(We should have such problems)

How to handle hetergeneous bandwidths?

• Win32 packager / installer / support
• Exit policies – e.g. Squid
 Make it all work better
 More theoretical work

− Midlatency? Synchronous? Assuming fewer bad nodes?

Get the Code, Run a Node!
(or just surf the web anonymously)

 Current code freely available (3-clause BSD license)
 Comes with a specification – the JAP folks implemented a

compatible Tor client in Java
 Design paper, system spec, code, see the list of current

nodes, etc.

 http://tor.eff.org/

