Nuitka Changelog

In this document, we track the per version changes and comments. This becomes a document on the
website, as well as individual posts on the Nuitka blog.

Nuitka Release 1.6

This release bumps the much awaited 3.11 support to full level. This means Nuitka is now expected to
behave identical to CPython3.11 for the largest part.

There is plenty of new features in Nuitka, e.g. a new testing approach with reproducible compilation
reports, support for including the metadata if an distribution, and more.

In terms of bug fixes, it's also huge, and esp. macOS got a lot of improvements that solve issues with
prominent packages in our dependency detection. And then for PySide we found a corruption issue, that
got workarounds.

Bug fixes

» The new dict i n optimization was compile time crashing on code where the dictionary shaped value
checked for a key was actually an conditional expression

Was crashing
"value" in ~“some_dict if condition else other dict °

Fixed in 1.5.1 already.

» Standalone: Added support for openvi no. This also required to make sure to keep used DLLs and
their dependencies in the same folder. Before they were put on the top level. Fixed in 1.5.1 already.

» Android: Convert RPATH to RUNPATH such that standalone binaries need no LD LI BRARY_PATH
guidance anymore. Fixed in 1.5.1 already.

* Standalone: Added support for newer ski mage. Fixed in 1.5.1 already.

« Standalone: Fix, new data file type . j son needed to be added to the list of extensions used for the
Qt plugin bindings. Fixed in 1.5.2 already.

» Standalone: Fix, the nui t ka_t ypes_pat ch module using during startup was released, which can
have bad effects. Fixed in 1.5.2 already.

» Android: More reliable detection of the Android based Python Flavor. Fixed in 1.5.2 already.

» Standalone: Added data files for pyt orch_l i ght ni ng and | i ght ni ng_f abri ¢ packages. Added
in 1.5.2 already.

» Windows: Fix, the preservation of PATH didn't work on systems where this could lead to encoding
issues due to reading a MBCS value and writing it as a unicode string. We now read and write the
environment value as uni code both. Fixed in 1.5.3 already.

* Plugins: Fix, the scons report values were not available in case of removed - - r enpve- out put
deleting it before use. It is now read in case if will be used. Fixed in 1.5.3 already.

» Python3.11: Added support for Except i onG oup built-in type. Fixed in 1.5.4 already.

* Anaconda: Fix, using nunpy in a virtualenv and not from conda package was crashing. Fixed in 1.5.4
already.

» Standalone: Added support for set upt ool s. Due to the anti-bloat work, we didn't notice that if that
was not sufficiently usable, the compiled result was not usable. Fixed in 1.5.4 already.

* Distutils: Added support for pyproject with src folders. This supports now
t ool . set upt ool s. packages. fi nd with a wher e value with pyproject files, where it typically is
used like this:

[t ool . set upt ool s. packages. fi nd]

where = ["src"]
» Windows: Fix, the nui t ka- r un batch file was not working. Fixed in 1.5.4 already.
 Standalone: Add pynoo implicit dependencies. Fixed in 1.5.5 already.
» macOS: Avoid deprecated API, this should fix newer Xcode being used. Fixed in 1.5.5 already.

* Fix, the mul ti processi ng in spawn mode didn't handle relative paths that become invalid after
process start. Fixed in 1.5.5 already.

* Fix, spec UCACHE_DI R%was not given the correct folder on non-Windows. Fixed in 1.5.5 already.

* Fix, special float values like nan and i nf didn't properly generate code for C values. Fixed in 1.5.5
already.

 Standalone: Add missing DLL for onnxr unt i me on Linux too. Fixed in 1.5.5 already.

« Ul: Fix, illegal python flags value could enable si t e mode. by mistake and were not caught. Fixed in
1.5.6 already.

» Windows: Fix, user names with spaces failed with MinGW64 during linking. Fixed in 1.5.6 already.

* Linux: Fix, was not excluding all libraries from glibc, which could cause crashes on newer systems.
Fixed in 1.5.6 already.

» Windows: Fix, could still pickup SxS libraries distributed by other software when found in PATH.
Fixed in 1.5.6 already.

» Windows: Fix, do not use cache DLL dependencies if one the files listed there went missing. Fixed in
1.5.6 already.

» Onefile: Reject path spec that points to a system folder. We do not want to delete those when
cleaning up clearly. Added in 1.5.6 already.

* Plugins: Fix, the di | | - conpat was broken by code object changes. Fixed in 1.5.6 already.
 Standalone: Added workaround for net wor kx decorator issues. Fixed in 1.5.7 already.

« Standalone: Added workaround for PySide6 problem with disconnecting signals from methods. Fixed
in 1.5.7 already.

« Standalone: Added workaround for PySide2 problem with disconnecting signals.

* Fix, need to make sure the yaml package is located absolutely or else case insensitive file systems
can confuse things. Fixed in 1.5.7 already.

 Standalone: Fix, extra scan paths were not considered in caching of module imports, breaking the
feature in many cases. Fixed in 1.5.7 already.

» Windows: Fix, avoid system installed appdi rs package as it is frequently broken. Fixed in 1.5.7
already.

» Standalone: The bytecode cache check needs to handle re-checking relative imports found in the
cache better. Otherwise some standard library modules were always recompiled due to apparent
import changes. Fixed in 1.5.7 already.

* Nuitka-Python: Fix, do not insist on PYTHONHOVE making it to 0s. envi ron in order to delete it
again. Fixed in 1.5.7 already.

* Nuitka-Python: Allow builtin modules of all names. This is of course what it does. Fixed in 1.5.7
already.

* Nuitka-Python: Ignore empty extension module suffix. Was confusing Nuitka to consider every file an
extension module potentially. Fixed in 1.5.7 already.

* Plugins: Properly merge code coming from distinct plugins. The _ future__ imports need to be
moved to the start. Added in 1.5.7 already.

« Standalone: Added support for opent el e package. Fixed in 1.5.7 already.
« Standalone: Added support for newer pandas and pyar r ow usage. Fixed in 1.5.7 already.
» Standalone: Added missing implicit dependency for PySide6. Fixed in 1.5.7 already.

* Fix, the pyi-file parser didn't handle doc strings, and could be crash for comment contents not
conforming to be import statement code. Fixed in 1.5.8 already.

» Standalone: Added support for pyqt | et 2 data files.

» Python2: Fix, Perm ssi onError doesn't exist on that version, which could lead to issues with
retries for locked files e.g. but was also observed with symlinks.

* Plugins: Recognize the error given by with upx if a file is already compressed.

* Fix, so called "fixed" imports were not properly tracking their use, such that they then didn't show up
in reports, and didn't cause dependencies on the module, which could e.g. impact i mport i b to not
be included even if still being used.

» Windows: Fix, retries for payload attachment were crashing when maximum number of retries were
reached. Using the common code for retries solves that, since that code handles it just fine.

« Standalone: Added support for the av module.

* Distutils: Fix, should build from files in bui | d folder rather than sour ce files. This allows tools like
ver si oneer that integrate with setuptools to do their thing, and get the result of that to compilation
rather than the original source files.

« Standalone: Added support for the Equat i on module.

» Windows/macOS: Avoid problems with case insensitive file systems. The nui t ka. Const ant s
module and nui t ka. const ant s package could collide, so we now avoid that package, there was
only what is now nuitka. Serialization in there anyway. Also similar problem with
nui tka. utils. Json andj son standard library module.

« Standalone: Added support t r ansf or mer s package.
« Standalone: Fix for PyQ 5 which needs a directory to exist.

*» macOS: Fix, was crashing with PyQt6 in standalone mode when trying to register plugins to
non-default path. We now try to skip the need, which also makes it work.

* Fix, recursion error for complex code that doesn't happen in ast module, but during conversion of
the node tree it gives to our own tree, were not handled, and crashed with Recur si onErr or. This is
now also handled, just like the error from ast .

« Standalone: Added support for sql f | uf f.
« Standalone: Added support for PySide 6.5 on macOS solving DLL dependency issues.

» Scons: Recognize more ccache outputs properly, their logging changed and provided irrelevant
states, and ones not associated so far.

* Onefile: Fix, could do random exit codes when failing to fork for whatever reason.
» Standalone: Added support for pysnnp package.

« Standalone: Added support for t or chaudi o and t ensor f | ow on macOS. These contain broken
DLL dependencies as relative paths, that are apparently ignored by macQOS, so we do that too now.

 Onefile: Use actual rather than guessed standalone binary name for mul ti processi ng spawns.
Without this, a renamed onefile binary, didn't work.

* Fix, side effect nodes, that are typically created when an expression raises, were use in optimization
contexts, where they do not work.

« Standalone: Added missing implicit dependency for sent ence_t r ansf or ner s package.

New Features

 Support for Python 3.11 is finally there. This took very long, because there were way more core
changes than with previous releases. Nuitka integrates close to that core, and is as such very
affected by this. Also a lot of missed opportunities to improve 3.7 or higher, 3.9 or higher, and 3.10 or
higher were implemented right away, as they were discovered on the way. Those had core changes
not yet taken advantage of and as a result got faster with Nuitka too.

» Reports: Added option --report-diffabl e to make the XML report created with --report
become usable for comparison across different machine installations, users compiling, etc. so it can
be used to compare versions of Nuitka and versions of packages being compiled for changes. Also
avoid short names in reports, and resolve them back to long names, so they become more portable
too.

» Reports: Added option to provide custom data from the user. We use it in out testing to record the
pipenv state used with things like - - r eport - user - pr ovi ded=pi penv- 1| ock- hash=64a5e4 with
this data ending up inside of reports, where tools like the new testing tool nui t ka- wat ch can use it
to decide if upstream packages changed or not. These are free form, just needs to fit XML rules.

* Plugins: Added i ncl ude- pyi -fi | e flag to data-files section. If provided, the . pyi file belonging to
a specific module is included. Some packages, e.g. ski mage depend at runtime on them. For data
file options and configuration, these files are excluded, but this is now the way to force their inclusion.
Added in 1.5.1 already.

e Compatibility: Added support for including distribution metadata with new option
--include-distribution-netadata.

This allows generic walks over distributions and their entry points to succeed, as well as version
checks with the metadata packages that are not compile time optimized.

» Distutils: Handle extension modules in build tasks. Also recognize if we built it ourselves, in which
case we remove it for rebuild. Added in 1.5.7 already.

* Linux: Detect DLL like filenames that are Python extension modules, and ignore them when listing
DLLs of a package with - - | i st - package-dl | s option. So far, this was a manual task to figure out
actual DLLs. This will of course improve the Yaml package configuration tooling .

« Onefile: Allow forcing to use no compression for the onefile payload, useful for debugging, to avoid
long compression times and for test coverage of the rare case of not compressing if the bootstrap
handles that correctly too.

» Need to resolve symlinks that were used to call the application binary in some places on macOS at
least. We therefore implemented the previously experimental and Windows only feature for all
platforms.

« Standalone: Added support including symlinks on non-Windows in standalone distribution, if they still
point to a path that is inside the distribution. This can save a bunch of disk space used for some
packages that e.g. distribute DLL links on Linux.

» Onefile: Added support for including symlinks from the standalone distribution as such on
non-Windows. Previously they were resolved to complete copies.

e Ul: Respect code suffixes in package data patterns. With this e.g.
--incl ude- package- dat a=package_nane: *. py is doing what you say, even if of course, that
might not be working.

 Ul: Added option - - edi t - nodul e- code option.

To avoid manually locating code to open it in Visual Code replaced old f i nd- nodul e helper to be a
main Nuitka option, where it is more accessible. This also goes beyond it it, such that it resolves
standalone file paths to module names to make debugging easier, and that it opens the file right
away.

« Standalone: Added support for handling missing DLLs. Needed for macOS PySide6.5.0 from PyPI,
which contains DLL references that are broken. With this feature, we can exclude DLLs that wouldn't
work anyway.

» macOS: Fix, added missing dependency for pl at f or mmodule.
Optimization

» Anti-Bloat: Remove | Pyt hon usage in huggi ngf ace_hub package versions. Added in 1.5.2
already.

* Anti-Bloat: Avoid | Pyt hon usage int okeni zer s module. Added in 1.5.4 already.

» Added support for module type as a constant value. We want to add all types we have shapes for to
allow better t ype(x) optimization. This is only the start.

 Onefile: During payload unpacking the memory mapped data was copied to an input buffer.
Removing that avoids memory copying and reduces usage.

* Onefile: Avoid repeated directory creations. Without it, the bootstrap was creating already existing
directories up to the root over and over, making many unnecessary file system checks. Added in
1.5.5 already.

 Anti-Bloat: Remove usage of | Pyt hon intri o package. Added in 1.5.6 already.

» Onefile: Use resource for payload on Win32 rather than overlay. This integrates better with
signatures, removing the need to check for original file size. Changed in 1.5.6 already.

* Onefile: Avoid using zstd input buffer, but using the memory mapped contents directly avoiding to
copy uncompressed payload data. Changed in 1.5.6 already.

* Onefile: Avoid double slashes in expanded onefile temp spec paths, they are just ugly.

 Anti-Bloat: Remove usage of pytest and | Pyt hon for some packages used by newer t or ch.
Added in 1.5.7 already.

 Anti-Bloat: Avoid t ri t on to use setuptools. Added in 1.5.7 already.
 Anti-Bloat: Avoid pyt est in newer net wor kx package. Added in 1.5.7 already.

* Prepare optimization for more built-in types with experimental code, but we need to disable it for now
as it requires more completeness in code generation to cover them all. We did some, e.g. module
type, but many more will be missing still.

» Prepare optimization of class selection at compile time, by having a helper function rather than a
dedicated node. This work is not complete though, and cannot be activated yet.

» Windows: Cache short path hame resolutions. Esp. for reporting, we now do a lot more of these than
before, and this avoids they can become too time consuming.

* Faster constant value handling for float value checks by avoiding module lookups per value.

» Minimize size for hello world distribution such that no unused extension modules are included, by
excluding even more modules and using modules from automatic inclusion of standard library.

» Anti-Bloat: Catch pyt est namespaces py and _pyt est sooner, to point to the actual uses more
directly.

 Anti-Bloat: Usage of doct est equals usage of "unittest" so cover it too, to point to the actual uses
more directly.

» Ever more spelling fixes in code and tests were identified and fixed.

» Make sure side effect nodes indicate properly that they are raising, allowing exceptions to fully bubble
up. This should lead to more dead code being recognized as such.

Organisational

 GitHub: Added marketplace action designed to cross platform build with Nuitka on GitHub directly.
Usable with both standard and commercial Nuitka versions, and pronouncing it as officially
supported.

Check out out at Nuitka-Action repository.

» Windows: When MSVC doesn't have WindowsSDK, just don't use it, and proceed, to e.g. allow
fallback to winlibs gcc.

» User Manual: The code to update benchmark numbers as giving was actually wrong. Fixed in 1.5.1
already.

» Ul: Make it clear that partially supported versions are considered experimental, not unsupported.
Fixed in 1.5.2 already.

* Plugins: Do not list deprecated plugins with pl ugi n-1i st, they do not have any effect, but listing
them, makes people use them still. Fixed in 1.5.4 already.

* Plugins: Make sure all plugins have descriptions. Some didn't have any yet, and sometimes the
wording was improved. Fixed in 1.5.4 already.

» Ul: Accepty as a shortcut for yes in prompts. Added in 1.5.5 already.
» Reports: Make sure the DLL dependencies for Linux are in a stable order. Added in 1.5.6 already.
* Plugins: Check for latest fixes in PySide6. Added in 1.5.6 already.

» Windows XP: For Python3.4 make using Python2 scons work again, we cannot have 3.5 or higher
there. Added in 1.5.6 already.

* Quality: Updated to latest PyLint. With Python 3.11 the older one, was not really working, and it was
about time. Due to its many changes, we included it in the hotfix, so those can still be done. Changed
in 1.5.7 already.

* Release: Avoid broken requires.txt in source distribution. This apparently breaks poetry.
Changed in 1.5.7 already.

 GitHub: Enhanced issue template for more clarity, esp. to avoid unnecessary options, e.g. using
--onefil e for issues that show up with - - st andal one already, to report factory branch issues
rather on Discord, and give a quick tip for a likely reproducer if a package fails to import.

» User Manual: Added instructions on how to add a DLL or executable to a standalone distribution.

» User Manual: Example paths in the table for path specs, meant for Windows were not properly
escaping the backslashes and therefore rendered incorrectly.

* Visual Code: Python3.11 is now the default configuration for C code editing.

» Developer Manual: Updated descriptions for adding test suite. While added the Python 3.11 test
suite, these instructions were further improved.

» Debugging: Make it easier to fully deactivate free lists. Now only need to set max size to 0 and the
free list will not be used.

» Debugging: Added more assertions, added corrections to feature disables, check args after function
calls for validity, check more types to be as expected.

* Plugins: Enhanced plugin error messages generally, with - - debug exceptions become warning
messages with the original exception being raised instead, making debugging during development
much easier.

https://github.com/Nuitka/Nuitka-Action

 Ul: Make it clear what not using ccache actually means. Not everybody is familiar with the design of
Nuitka there or what the tool can actually do.

« Ul: Do not warn about not found distributions but merely inform of them.

Since Nuitka is fully compatible with these, no need to consider those a warning, for some packages
they also are given really a lot.

« Ul: Catch user error of wrong cases plugin names

This now points out the proper name rather than denying the existence outright. We do not want to
accept wrong case names silently.

Cleanups

» Use proper API for setting PyConfi g values during interpreter initialization. There is otherwise
always the risk of crashes, should these values change during runtime. Fixed in 1.5.2 already.

« For our reformulations have a helper function that build release statements for multiple variables at
once. This removed a bunch of repetitve code from re-formulations.

» Move the pyi-file parser code out of the module nodes and to source handling, where it is more
closely related.

Tests

* Adding a nui t ka-wat ch tool, which is still experimental and for use with the Nuitka-Watch
repository.

 Refined macOS standalone exceptions further to cover more normal usages of files on that OS and
for frameworks that applications typically use from the system.

« Detect and consider onefile mode if given in project options as well.
» Was not really applying import check in programs tests. Added in 1.5.6 already.
» Added coverage of testing the signing of Windows binaries with the commercial plugin.

» Added coverage of version information to hello world onefile test, so we can use it for Virus tools
checks.

» Added tests to cover PyQt6 and PySide6 plugin availability, we so far only had that for PyQt5, which
is of course not relevant, and totally different code anyway.

* Cleanup distutils tests case to use common test case scanning. We now decide version skips based
on names, and had to get away from number suffixes, so they are now in the middle.

Summary

The class bodies optimization has made some progress in this release, going to a re-formulation of the
metaclass selection, so as to allow its future optimization. We are not yet at "compiled objects", but this is
a promising road. We need to make some optimization improvements for inlining constant value calls, then
this can become really important, but by itself these changes do not yield a lot of improvement.

For macOS again a bunch of time was spent to improve and complete the detection of DLL dependencies.
More corner cases are covered now and more packages just work fine as a result.

The most important is to become Python3.11 compatible, even if attribute lookups, and other things, and
not yet optimized. We will get to that in future releases. For now, compatibility is the first step to take.

For GitHub users, the Nuitka-Action will be interesting. But it's still in develop. We keep adding missing
options of Nuitka for a while it seems, but for most people it should be usable already.

https://github.com/Nuitka/Nuitka-Watch

The new nui t ka- wat ch ability, should allow us to detect breaking PyPI releases, that need a new tweak
in Nuitka sooner. But it will probably grow in the coming releases to full value only. For now the tool itself is
not yet finished.

From here, a few open ends in the CPython 3.11 test suite will have to be addressed, and maybe some of
the performance tricks that it now will enable, e.g. with repeated attribute lookups.

Nuitka Release 1.5

This release contains the long awaited 3.11 support, even if only on an experimental level. This means
where 3.10 code is used, it is expected to work equally well, but the Python 3.11 specific new features
have yet been done.

There is plenty of new features in Nuitka, e.g. much enhanced reports, Windows ARM native compilation
support, and the usual slew of anti-bloat updates, and newly supported packages.

Bug Fixes

 Standalone: Added implicit dependencies for charset _nornual i zer package. Fixed in 1.4.1
already.

« Standalone: Added platform DLLs for sounddevi ce package. Fixed in 1.4.1 already.

* Plugins: The info from Qt bindings about other Qt bindings being suppressed for import, was
spawning multiple lines, breaking tests. Merged to a single line until we do text wrap for info
messages as well. Fixed in 1.4.1 already.

* Plugins: Fix r emoveDl | Dependenci es was broken and could not longer be used to remove DLLs
from inclusion. Fixed in 1.4.1 already.

* Fix, assigning methods of lists and calling them that way could crash at runtime. The same was true
of dict methods, but had never been observed. Fixed in 1.4.2 already.

» Standalone: Added DLL dependencies for onnxr unt i me. Fixed in 1.4.2 already.
« Standalone: Added implicit dependencies for t ext ual package. Fixed in 1.4.2 already.

* Fix, boolean tests of lists could be optimized to wrong result when list methods got recognized, due to
not annotating the escape during that pass properly. Fixed in 1.4.3 already.

« Standalone: Added missing implicit dependency of apsw. Fixed in 1.4.3 already.

Note

Currently apsw only works with manual workarounds and only in limited ways, there is an
import level incompatible with __i nit __ being an extension module, that Nuitka does not yet
handle.

» Python3: Fix, for range arguments that fail to divide there difference, the code would have crashed.
Fixed in 1.4.3 already.

« Standalone: Fix, added support for newer pkg_r esour ces with another vendored package. Fixed in
1.4.4 already.

« Standalone: Fix, added support for newer shapel y 2.0 versions. Fixed in 1.4.4 already.

* Plugins: Fix, some yaml package configurations with DLLs by code didn't work anymore, notably old
shapel y 1.7.x versions were affected. Fixed in 1.4.4 already.

* Fix, for onefile final result the "--output-dir" option was ignored. Fixed in 1.4.4 already.

« Standalone: Added nozi | | a- ca package data file. Fixed in 1.4.4 already.
« Standalone: Fix, added missing implicit dependency for newer gevent . Fixed in 1.4.4 already.
» Scons: Accept an installed Python 3.11 for Scons execution as well. Fixed in 1.4.4 already.

» Python3.7: Some i nportli b. resour ce nodes asserted against use in 3.7, expecting it to be 3.8
or higher, but this interface is present in 3.7 already. Fixed in 1.4.5 already.

« Standalone: Fix, Python DLLs installed to the Windows system folder were not included, causing the
result to be not portable. Fixed in 1.4.5 already.

» Python3.9+: Fix, nmet adat a. r esour ces files method j oi npat h is some contexts is expected to
accept variable number of arguments. Fixed in 1.4.5 already.

« Standalone: Workaround for cust ont ki nt er data files on non-Windows. Fixed in 1.4.5 already.
« Standalone: Added support for over ri des package. Fixed in 1.4.6 already.
« Standalone: Added data files for st r awber ry package. Fixed in 1.4.7 already.

* Fix, anti-bloat plugin caused crashes when attempting to warn about packages coming from
--incl ude- package by the user. Fixed in 1.4.7 already.

» Windows: Fix, main program filenames with an extra dot apart from the . py suffix, had the part
beyond that wrongly trimmed. Fixed in 1.4.7 already.

* Fix, list methods didn't properly annotated value escape during their optimization, which could lead to
wrong optimization for boolean tests. Fixed in 1.4.7 already.

« Standalone: Added support for i magej , scyj ava, j pype packages. Fixed in 1.4.8 already.

 Fix, using --i ncl ude- package on extension module names was not working. Fixed in 1.4.8
already.

« Standalone: Added support for t ensor f | ow. ker as namespace as well.

« Distutils: Fix namespace packages were not including their contained modules properly with regards
to__file__ properties, making relative file access impossible.

» Onefile: On Windows the onefile binary did lock itself, which could fail with certain types of AV
software. This is now avoided.

 Accessing files using the top level net adat a. r esour ces files object was not working properly, this
is now supported too.

» MSYS2: Make sure mixing POSIX and Windows slashes causes no issues by hard-coding the onefile
archive to use the subsystem slash rather than what MSYS prefers to use internally.

» Standalone: Added missing dependencies of newer i magei o.

* Fix, side effect nodes didn't annotate their non-exception raising nature properly, if that was the case.

New Features

» Added experimental support for Python 3.11, for 3.10 language level code it should be fully usable,
but the CPyt hon311 test suite has not even been started to check newly added or changed features.

» Windows: Support for native Python on Windows ARMG64, which needs 3.11 or higher, but
standalone and therefore onefile do not yet work, due to lack of any form of binary dependency
analysis tool.

This platform is relatively new in Python and generally. For the time being standalone and onefile
should be done with Intel based Python, they would also be ARM64 only, whereas 32/64 Bit binaries
can be run on all Windows ARM platforms.

» Reports: Write compilation report even in case of Nuitka being interrupted or crashing. This then
includes the exception, and a status like conpl et ed or i nt er r upt ed. At this time this happens
only when - -report= was specified, but in the future we will likely write one in case of Nuitka
crashes.

» Reports: Now the details of the used Python version, its flavor, the OS and the architecture are
included. This is crucial information for analysis and can make - - ver si on output unnecessary.

* Reports: License reports now handle UNKNOWN license by falling back to checking the classifiers, and
therefore include the correct license e.g. with set upt ool s. Also in case no license text is found, do
not create an empty block. Added in 1.4.4 already.

» Reports: In case the distribution name and the contained package names differ, output the list of
packages included from a distribution. Added in 1.4.4 already.

* Reports: Include data file sizes in report. Added in 1.4.7 already.

» Reports: Include memory usage into the compilation report as well.

» macOS: Add support for downloading ccache on arm64 (M1/M2) too. Added in 1.4.4 already.
« Ul: Allow - - out put - fi | enan®e for standalone mode again. Added in 1.4.3 already.

« Standalone: Improved isolation with Python 3.8 or higher. Using new init mechanisms of Python, we
now achieve that the scan for pyvenv. cf g on in current directory and above is not done, using it will
be unwanted.

» Python2: Expose __| oader __ for modules and register with pkg_r esour ces too which expects
these to be present for custom resource handling.

» Python3.9+: The net adat a. r esour ces files objects method i t er di r was not implemented vyet.
Fixed in 1.4.5 already.

» Python3.9+: The net adat a. r esour ces files objects method absol ut e was not implemented yet.

» Added experimental ability to create virtualenv from an existing compilation report with new
--create-environnment-fromreport option. It attempts to create a requirements file with the
used packages and their versions. However, sometimes it seems not to be possible to due to
conflicts.

Optimization

* Onefile: Use memory mapping for calculating the checksum of files on all platforms. This is faster and
simpler code. So far it had only be done this way on Windows, but other platforms also benefit a lot
from it.

 Onefile: Use memory mapping for accessing the payload rather than file operations. This avoids
differences to macOS payload handling and is much faster too.

* Anti-Bloat: Avoid using dask inj obl i b.

Note
Newer versions of j obl i b do not currently work yet due to their own form of multiprocessing

spawn not being supported yet.

* Anti-Bloat: Adapt for newer pandas package.

* Anti-Bloat: Remove more | Pyt hon usages in newer tensorflow.

» Use dedicated class bodies for Python2 and Python3, with the former has a static dict type shape,
and with Python3 this needs to be traced in order to tell what the meta class put in there.

» Compile time optimize dicti n/not i nanddi ct. has_key operations statically where the keys of a
dict are known. As a result, the class declarations of Python3 no longer created code for both
branches, the one with nmet acl ass = in the class declaration and without. That means also a big
scalability improvement.

* For the Python3 class bodies, the usage of | ocal s() was not recognized as not locally escaping all
the variables, leading to variable traces where each class variable was marked as escaped for no
good reason.

» Added support for di ct. fronkeys method, making the code generation understand and handle
static methods as well.

» Added support for os.listdir and os. path. basenane. Added in 1.4.5 already for use in
implementing the i t er di r method, but they are also now optimized by themselves.

» Added support for trusted constant values of the os module. These are curdir, pardir, sep,
ext sep, al t sep, pat hsep, | i nesep which may enable some minor compile time optimization to
happen and completes this aspect of the os module.

 Faster di gi t size checks during f | oat code generation for better compile time performance.

e Faster | i st operations due to using PyLi st CheckExact everywhere this is applicable, this
mostly makes debug operations faster, but also deep copying list values, or extending lists with
iterables, etc.

» Optimization: Collect module usages of the given module during its abstract execution. This avoids a
full tree visit afterwards only to find them. It is much cheaper to collect them while we go over the
tree. This enhances the scalability of large compilations by ca. 5%.

» Optimization: Faster determination of loop variables. Rather than using a generic visitor, we use the
children having generator codes to add traversal code that emits relevant variables to the user
directly.

» Cache extra search paths in order to avoid repeated directory operations as these are known to be
slow at times.

« Standalone: Do not include py. t yped data files, these indicator files are for IDEs, but not needed at
run time ever.

» Make sure that the generic attribute code optimization is also effective in cases where a Python DLL
is used. Previously this was only guaranteed to be used with static libpython.

* Faster list constant usage
Small immutable constants get their own code that is much faster for small sizes.

Medium sized lists get code that just is hinted the size, but takes items from a source list, still a lot
faster.

For repeated lists where all elements are the same, we use a dedicated helper for all sizes, that is
even faster except for small ones with LTO enabled, where the C compiler may already do that
effectively.

» Added optimization for os. pat h. abspat h and os. pat h. i sabs which of course have not as much
potential for compile time optimization, but we needed them for providing . absol ut e() for the meta
path loader files implementation.

» Faster class dictionary propagation decision. Instead of checking for trace types, let the trace object
decide. Also abort immediately on first inhibit, rather than checking all variables. This improves
Python2 compile time, and Python3 where this code is now starting to get used when the class
dictionary is shown to have di ct type.

* Specialize type method __pr epar e__ which is used in the Python3 re-formation of class bodies to
initialize the class dictionary. Where the metaclass is resolved, we can use this to decide that the
standard empty dictionary is used statically, enabling class dictionary propagation for best scalability.

At this time this only happens with classes without bases, but we expect to soon do this with all
compile time known base classes. At this time, these optimization to become effective, we need to
optimize meta class selection from bases classes, as well as modification of base classes with
__nro_entries__ methods.

» The bool built-in on boolean values is now optimized away.

Since it's used also for conditions being extracted, this is actually somewhat relevant, since it could
keep code alive in side effects at least for no good reason and this allows a proper reduction.

Organisational

* Project: Require the useful stuff for installation of Nuitka already. These are things we cannot inline
really, but otherwise will frequently be warned about, e.g. zst andar d for onefile and or der ed- set
for fast operation, but we do not require packages that might fail to install.

» User Manual: Added section about virus scanners and how to avoid false reports.

» User Manual: Enhanced description for plugin module loading, the old code was too complicated and
actually working only for a mode of including plugin code that is discouraged.

» User Manual: Fix section for standalone finding files on wrong level.

» Windows: Using the console on Python 3.4 to 3.7 is not working very well with e.g. many Asian
systems. Nuitka fails to setup the encoding for stdin and stdout or this platform. It can then produce
exceptions on input or output of unicode data, that doesn't overlap with UTF-8.

We now inform the user of these older Python with a warning and mnemonic, to either disable the
console or to upgrade to Python 3.8 or higher, which normally won't be much of an issue for most
users. Added in 1.4.1 already.

» Debugging: Fixup debugging reference count output with Python3.4. For Python 3.11 compatibility
tests, actually it was useful to compare with a version that doesn't have coroutines yet. Never tell me,
supporting old versions is not good.

 Deprecating support for Python 3.3, there is no apparent use of this version, and it has gained
specific bugs, that are indeed not worth our time. Python 2.6 and Python 2.7 will continue to be
supported probably indefinitely.

* Recommend or der ed- set for Python 3.7 to 3.9 as well, as not only for 3.10+ because on Windows,
to install or der set MSVC needs to be installed, whereas or der ed- set has a wheel for ready use.

» Actually zstandard requirement is for a minimal version, added that to the requirement files.
» Debugging: Lets not reexecute Nuitka in case if we are debugging it from Visual Code.

» Debugging: Include the . pdb files in Windows standalone mode for proper C tracebacks should that
be necessary.

« Ul: Detect the GitHub flavor of Python as well.

* Quality: Check the cl ang-f or mat version to avoid older ones with bugs that made it switch
whitespace for one file. Using the one from Visual Code C extension is a good idea, since it will often
be available. Running the checks on newer Ubuntu GitHub Actions runner to have the correct version
available.

* Quality: Updated the version of r st f nt and i sort to the latest versions.

 GitHub: Added commented out section for enabling ssh login, which we occasionally need to git
bisect problems specific to GitHub Python flavor.

 Plugins: Report problematic plugin name with module name or DLL name when these raise
exceptions.

» Use or der ed- set package for Python3.7+ rather than only Python3.10+ because it doesn't need
any build dependency on Windows.

 Ul: When showing source changes, also display the module name with the changed code.
« Ul: Use function intended for user query when asking about downloads too.

« Ul: Do not report usage of ccache for linking from newer version, that is not relevant.

* Onefile: Make sure we have proper error codes when reporting 1O errors.

» MSVC: Detect a version for developer prompts too. This version is needed for use in enabling version
specific features.

« Started UML diagrams with pl ant um that will need to be completed before using them in then new
and more visual parts of Nuitka documentation.

 Ul: Check icon conversion capability at start of compilation rather than error exiting at the very end
informing the user about required i magei o packages to convert to native icons.

* Quality: Enhanced autoformat on Windows, which was susceptible to tools introducing Windows new
lines before other steps were performed, that then could be confused, also enforcing use of UTF-8
encoding when working with Nuitka source code for formatting.

Cleanups

» The del vewheel plugin was still using a zng class name from its original implementation, adapted
that.

» Use common template for generator frames as well. This made them also work with 3.11, by avoiding
duplication.

« Applied code formatting to many more filesint est s, etc.
* Removed a few micro benchmarks that are instead to be covered by construct based tests now.

» Enhanced code generation for specialized in-place operations to avoid unused code for operations
that do not have any shortcuts where the operation would be actual in-place of a reference count 1
object.

 Better code generation for module variable in-place operations with proper indentation and no
repeated calls.

* Plugins: Use the nanedt upl e factory that we created for informational tuples from plugins as well.
» Make details of download utils module more accessible for better reuse.

* Remove last remaining Python 3.2 version check in C code, for us this is just Python3 with 3.2 being
unsupported.

« Cleanup, name generated call helper file properly, indicating that it is a generated file.

Tests

» Made the CPython3.10 test suite largely executable with Python 3.11 and running that with CI now.

« Allow measuring constructs without writing the code diff again. Was crashing when no filename was
given.

» Make Python3.11 test execution recognized by generally accepting partially supported versions to
execute the tests with.

» Handle also newf st at directory checks in file usage scan. This are used on newer Linux systems.

* GitHub: In actions use - - r epor t for coverage and upload the reports as artifacts.

» Use no- gt plugin to avoid warnings in mat pl ot | i b test rather than disabling the warnings about Qt
bindings.

» macOS: Detect if the machine can take runtime traces, which on Apple Silicon by default it cannot.
» macOS: Cover all APIs for file tracing, rather than just one for extended coverage.

* Fix, distutils test was not installing the built wheels, but source archive and therefore compiling that
second time.

 For the pyproj ect.toml using tests, Nuitka was always downloaded from PyPI rather than using
the version under test.

« Ignore | d info output about mismatching architecture libraries being ignored. Fixed in 1.4.1 already.

Summary

With this release an important new avenue for scalability has been started. While for Python2 class bodies
were very often reduced to just that dictionary creation, with Python3 that was not the case, due to the
many new complexities, and while this release makes a start, we will be able to continue this path towards
much more scalable class creation codes. And while the performance does not really matter all that much
for these, knowing these, will ultimately lead us to "compiled classes" as our own type, and "compiled
objects" that may well perform much faster.

Already now, the enhancements to class creation codes will result in smaller binaries, but much more is
expected the more this is completed.

The majority of the work was of course to become Python3.11 compatible, and unfortunately the attribute
lookups are not as optimized as for 3.10 yet, which may cause disappointing results for performance
initially. We will need to complete that before benchmarks will make much sense.

For the next release, full Python 3.11 support is planned. | believe it should be usable. Problems with 3.11
may get hotfixes, but ultimately the develop version is probably the one to recommend when using 3.11
with Nuitka, as there will be the whole set of fixes, since not everything will be ported back.

The new reports should be used in bug reporting soon. We foresee that for issue reports, these may well
become mandatory. Together with the ability to create a virtualenv from the reports, this may make
reproducing issues a breeze, but first tries on complex projects were also highlighting that it may not be as
simple.

Nuitka Release 1.4

This release contains a large amount of performance work, where specifically Python versions 3.7 or
higher see regressions in relative performance to CPython fixed. Many cases of macros turned to
functions have been found and resolved. For 3.10 specifically we take advantage of new opportunities for
optimization. And generally avoiding DLL calls will benefit execution times on platform where the Python
DLL is used, most prominently Windows.

Then this also adds new features, specifically custom reports. Also tools to aid with adding Nuitka package
configuration input data, to list DLLs and data files.

With multidist we see a brand new ability to combine several programs into one, that will become very
useful for packaging multiple binaries without the overhead of multiple distributions.

Bug Fixes

« Standalone: Added implicit dependencies for dependency_i nj ect or package. Fixed in 1.3.1
already.

* Fix, the generated metadata nodes for distribution queries had an error in their generated children
handling that could cause crashes at compile time. Fixed in 1.3.2 already.

« Standalone: Added implicit dependencies for passl i b. apache package. Fixed in 1.3.2 already.

» Windows: Fix, our shortcut to find DLLs by analyzing loaded DLLs stumbled in a case of a DLL
loaded into the compiling Python that had no filename associated, while strange, we need to handle
this as well. Fixed in 1.3.3 already.

« Standalone: Also need to workaround more decorator tricks for net wor kx. Fixed in 1.3.3 already.

» Scons: Fix, was not updating PATH environment variable anymore, which could lead to externally
provided compilers and internal winlibs gcc clashing on Windows, but should be a general problem.
Fixed in 1.3.4 already.

« Standalone: Added support for cef pyt hon3 package. Fixed in 1.3.4 already.
» Standalone: Added support for newer webvi ew package versions. Fixed in 1.3.4 already.

« Standalone: Fix, some extension modules set their __ fil e__ to None during multi phase imports,
which we then didn't update anymore, however that is necessary. Fixed in 1.3.4 already.

» Python3.10+: Fix, was not supporting nmat ch cases where an alternative had no condition
associated. Fixed in 1.3.5 already.

» Windows: Ildentify Windows ARM architecture Python properly. We do not yet support it, but we
should report it properly and some package configurations are already taking it already into account.
Fixed in 1.3.5 already.

* Fix, the Nuitka meta path based loader, needs to expose a __nodul e attribute because there is
code out there, that identifies standard loaders through looking at this value, but crashes without it.
Fixed in 1.3.5 already.

* Fix, very old versions of the i nportli b_net adat a backport were using themselves to load their
__version__ attribute. Added a workaround for it, since in Nuitka it doesn't work until after loading
the module.

* Fix, value escapes for attribute and subscript assignments sources were not properly annotated. This
could cause incorrect code execution. Fixed in 1.3.6 already.

* Fix, "pure" functions, which are currently only our complex call helper functions, were not visited in all
cases. This lead to a crash in code generation after modules using them got demoted to bytecode.
After use from cache, this didn't happen again. Fixed in 1.3.6 already.

« Standalone: Added more implicit dependencies of crypto packages. Fixed in 1.3.6 already.
» Standalone: Added implicit dependencies of pygnent s. st yl es module. Fixed in 1.3.6 already.

* Fix, was falsely encoding El | i psi s too soon during tree building. It is not quite like True and
Fal se. Fixed in 1.3.6 already.

« Standalone: Fix, nunpy on macOS didn't work inside an application bundle anymore. Fixed in 1.3.7
already.

» Python3.8+: Fix, need to follow change for extension module handling, otherwise some uses of
os. add_dl | _di rect ory fail to work. Fixed in 1.3.8 already.

» Standalone: Added missing implicit dependencies of sql al chemny. Fixed in 1.3.8 already.

» Python3.9+: Fix, resource reader files was not fully compatible and needed to register with
i mportlib.resources.as_fil e towork well with it. Fixed in 1.3.8 already.

* Fix, the version check for cv2 was not working with the opencv- pyt hon- headl ess variant.
Package name and distribution name is not a 1:1 mapping for all things. Fixed in 1.3.8 already.

» Standalone: Added DLLs needed fort| s_cl i ent package.

* Fix, imports of resolved names should be modified for runtime too. Where Nuitka recognizes aliases,
as e.g. the request s module does, it only adding a dependency on the resolved name, but not
request s itself. The import however was still done at runtime on r equest s which then didn't work.
This was only visible if only these aliases to other modules were used.

* Onefile: Fix, do not send duplicate CTRL-C to child process. Our test only send it to the bootstrap
process, rather than the process group, as it normally is working, therefore misleading us into
sending it to the child even if not needed.

* Onefile: When not using cached mode, on Windows the temporary folder used sometimes failed to
delete after the executable stopped with CTRL-C. This is due to races in releasing of locks and
process termination and AV tools, so we now retry for some time, to make sure it is always deleted.

« Standalone: Fix, was not ignoring . dyl i b when scanning for data files unlike all other DLL suffixes.
« Standalone: Added missing implicit dependency of npl cai r o.

« Standalone: The main binary name on non-Windows didn't have a suffix . bi n unlike in accelerated
mode. However, this didn't work well for packages which have binaries colliding with the package
name. Therefore now the suffix is added in this case too.

» macOS: Workaround bug in pl atform util s. pat hs. It is guessing the wrong path for included
data files with Nuitka.

« Standalone: Added DLLs of sound_1 i b, selecting by OS and architecture.

New Features

» Ul: Added new option to listing package data files. This is for use with analyzing standalone issues.
And will output all files that are data files for a given package name.

pyt hon -m nuitka --1i st-package- dat a=t ki nt erweb

« Ul: Added new option to listing package DLL files. This is also for use with analyzing standalone
issues.

pyt hon -m nuitka --1ist-package-dl | s=tkinterweb

* Reports: The usages of modules, successful or not, are now included in the compilation report.
Checking out which ones are not - f ound might help recognition of issues.

 Multidist: You can now experimentally create binaries with multiple entry points. At runtime one of
multiple __rmai n__ will be executed. The option to use is multiple --nmai n=sonme_nai n. py
arguments. If then the binary name is changed, on execution you get a different variant being
executed.

Note

Using it with only one replaces the previous use of the positional argument given and is not
using multidist at all.

Note

Multidist is compatible with onefile, standalone, and mere acceleration. It cannot be used for
module mode obviously.

For deployment this can solve duplication.

Note

For wheels, we will probably change those with multiple entry points to compiling multidist
executables, so we do avoid Python script entry points there. But this has not yet been done.

* Onefile: Kill non-cooperating child processes on CTRL-C after a grace period, that can be controlled
at compile time with --onefile-child-grace-tine the hard way. This avoids hangs of
processes that fail to properly shutdown.

* Plugins: Add support for extra global search paths to mimic sys. pat h manipulations in the Yaml
configuration with new gl obal - sys- pat h import hack.

» Standalone: Added support for t ki nt er web on Windows. Other platforms will need work to be done
later.

* Fix, for package metadata as from i nport|i b. met adat a. met adat a for use at runtime we need
to use both package name and distribution name to create it, or else it failed to work. Packages like
opencv- pyt hon- headl ess can now with this too.

* Reports: Include used distributions of compiled packages and their versions.

* Reports: Added ability to generate custom reports with - - r epor t -t enpl at e where the user can
provide a Jinja2 template to make his own reports.

* Anti-Bloat: Added support for checking python flags. There are no_asserts, no_docst ri ngs and
no_annot ati ons now. These can be used to limit rules to be only applied when these optional
modes are active.

Not all packages will work in these modes, but often can be enhanced to work with relatively little
patching. This allows to limit these patches to only where they are necessary.

Optimization

» Anti-Bloat: Avoid using spar se and through that Numba in the sci py package, reducing its
distribution footprint. Part of 1.3.3 already.

* Anti-Bloat: Avoid IPython and Numba in t ri mesh package. Part of 1.3.3 already.
* Anti-Bloat: Avoid Numba in shap package. Part of 1.3.8 already.

* Anti-bloat: Removed xgboost docstring dependencies, such that
- - pyt hon-fl ag=no_docst ri ngs can be used with this package.

* For guided deep copy f r ozenset and empty t upl e need no copies

This also speeds up copies of non-empty tuples by avoiding that size checking branch in construction
with Python 3.10 or higher.

» For node construction, avoid keyword argument style calls of the base class, where there is only a
single argument. They don't really help readability, but cost compile time.

» Determine guard mode of frames dynamically and avoid frame preservation checks where they are
not needed.

For Python2 this is necessary, but not for Python3, so make the function avoid finding the parent
frame for that version entirely, which should speed up compilation as well.

By not hard coding frame guard mode at creation time, and instead determine it at compile time, after
optimization, so this now allows to use the "once" mode more often. This affects contractions and
also classes on the module level right now. They do not need a cached frame, since their code is only
executed once.

By avoiding that useless code, the C compiler also has a slightly better scalability, since the classes
are all created in one function that then has less code.

» The bytecode cache is now checking if the used modules or attempted to be used modules are
available or not in just the same way. Previously it was very dependent on the file system to contain
the same things, which was not giving cache hits even after only creating a new folder near a binary,
since that affected importable modules. With the new check it should be much more directly hitting
even across different virtual environments, but with same code.

Generate base classes or mixins for all kinds of expression, statements and statement sequences.
The previous code had a dedicated variant for single child, to allow faster operation in a common
case, but still a lot of hasattr/getattr/setattr on dynamic attribute names were done. This
was making the tree traversal during optimization slower than necessary.

Another shortcoming was that for some nodes, some values are optional, where for others, they are
not. Some values are a tupl e actually, while most are nodes only. However, dealing with this
generically was also slower than necessary.

The new code now enforces children types during creation and updated, it rejects unexpected None
values for non-optional children, and it provides generated code to do this in the fastest way possible,
although surely some more improvements will come here.

Also when abstract executing the tree, rather than generically visiting all children, this now just unrolls
this, and there are even some modes added, where a node can indicate properties, e.g.
auto_conpute_handling = "final,no_raise" wil tell the code generator that this
expression never raises in the computation, and is final, i.e. doesn't have any code to evaluate,
because it cannot be optimized any further.

Also the way checkers previously worked, for every node creation, for every child update, a
dictionary lookup had to be done. This is now hard coded for the few nodes that actually want to
convert values on the fly and we might make a difference in the future for optional checkers, such that
these are only run in debug mode.

These changes brought about much faster compilation, however the big elephant in the room will still
be merging value traces, and scalability problems remain there.

« Attribute node generation for method specs like di ct . updat e, etc. now provide type shapes. From
these type shapes, mixins for the result value type are picked automatically. Previously these shapes
were added manually. In some cases, they were even missing. In a few cases, where the type is
dependent on the Python version, we do not currently do this though, so this needs more work, but
expanding the coverage got easier in this way.

» Determining the used modules of a module requires a tree visit operations, that then asked for node
types and used different APIs. This has been unified to be able to call a virtual method instead, which
saves some compile time.

« After scanning for a module, we then determined the module kind even after we previously knew it
during the scan. Also, this was checking os. pat h. i sdi r which was making it relatively slow and
wasting 5% compile time on the IO being done. The check got enhanced and most often replaced
with using the knowledge from the original import scan eliminating this time.

» Already most helper code of Nuitka was included from . c files, but compiled generators and
compiled cells codes were not yet done like this, making life unnecessarily harder for the compiler
and linker. This should also allow more optimization for some codes.

 Cache the plugin decisions about recursion for a module name. When a module is imported multiple
times plugins were each asked again and again, which is not a good thing to do.

 Avoid usage of PyQhj ect _Ri chConpar eBool API, as we have our own comparison functions that
are faster and faster to call without crossing of DLL barrier.

» Python3.8+: Avoid usage of Pyl ndex_Check which has become an API in 3.8, and was as a result
not inlined anymore with a DLL barrier was to be crossed, making all kinds of multiplication and
subscript/index operations slower.

» Replace PyNunber | ndex API with our own code. As of 3.10 it enforces a conversion to | ong that
for Nuitka is not a good thing to do in all places. But also due to DLL barrier it was potentially slow to
call, and is used a lot, and we can drop the checks that are useless for Nuitka.

» Python3.7+: Avoid the use of Pyl nport_ Get Modul e for looking up imported modules from
sys. nodul es, rather look it up from interpreter internals, also this was using subscript functions,
when this is always a dictionary.

Avoid using Pyl nport _Get Modul eDi ct and instead have our own API to get this quicker.

Faster exception match checks and sub type checks.

This solves a TODO about inlining the API function used, so we can be faster in a relatively common
operation. For every exception handler, we had to do one API call there.

Faster subtype checks.

These are common in binary operations on non-identical types, but also needed for the exception
checks, and object creation through class type calls. With our own PyType | sSubType replacement
these faster to use and avoid the API call.

Faster Python3 i nt value startup initialization.

On Python 3.9 or higher we can get small int values directly from the interpreter, and with 3.11 they
are accessible as global values.

Also we no longer de-duplicate small int values through our cache, since there is no use in this,
saving a bunch of startup time. And we can create the values with our own API replacement, that will
work during startup already and save API calls as these can be relatively slow. And esp. for the small
values, this benefits from not having to create them.

Faster Python3 byt es value startup initialization.

On Python 3.10 or higher, we can create these values ourselves without an API call, avoiding its
overhead.

Also we no longer de-duplicate small bytes values through our cache, because that is already done
by the API and our replacement, so this was just wasting time.

Faster sl i ce object values with Python 3.10 or higher

On Python 3.10 or higher, we can create these values ourselves without an API call, avoiding its
overhead.

These are important for Python3, because a[x: y] in the general case has to use a[sl i ce(X, y)]
on that version, making this somewhat relevant to performance in some cases.

Faster st r built-in with API calls

For common cases, this avoids API calls. We mostly have this such that pri nt style tests do not
have this as API calls where we strive to remove all API calls for given programs.

Faster exception normalization.

For the common case, we have our own variant of PyErr _Nor mal i zeExcept i on that will avoid the
API call. It may still call the PyCbj ect | sSubcl ass API, for which we only have started
replacement work, but this is already a step ahead in the right direction.

Faster object releases

For Python3.8 or higher when our code released objects, it was doing that with an API call, due to a
macro change in Python headers. We revert that and do it still on our own which avoids the
performance penalty.

Enable Python threading during extension module DLL loading

We now release the GIL for Python3.8 or higher when loading the DLL, following a change in that
version.

» Faster variable handling in trace collection. The code was doing checks for variable types, to decide
what to do e.g. when control flow escapes for a variable. However, this is faster if solved with a virtual
method in those variable classes, shifting the responsibility to inside there.

» For call codes the need to check the return value was not perfectly annotated in all cases. This is now
driven by the expression rather than passed, and will result in better code generated in some corner
cases.

Organisational

» Release: Make clear we require wheel and set upt ool s to install by adding a pypr oj ect . t onl
that addresses a warning of pi p. Part of 1.3.6 release already.

» Debugging: When plugins evaluate when conditions that raise, output which it was exactly. Part of
1.3.3 already.

 Anti-Bloat: Added a mnemonic and more clear message for the case of unwanted imports being
encountered. Also do not warn about IPython itself using IPython packages, that must of course be
considered normal. Now it also lists the module that does the unwanted usage immediately.
Previously this was not as clear.

 Ul: More clear output for not yet supported Python version. Make it more clear in the message, what
is the highest supported version, and what version is Nuitka and what is Python in this.

» Ul: Make sure data files have normalized paths. Specifically on Windows, otherwise a mix of slashes
could appear. Part of 1.3.6 release already.

« Ul: Make it clear that disabling the console harms your debugging when we suggest the
- - di sabl e- consol e for GUI packages. Otherwise using that, they just deprive themselves of ways
to get error information.

 Ul: The ordering of scons ccache report was not enforced. Part of 1.3.7 release already.

* Quality: Use proper temporary filename during autoformat, so as to avoid flicker in Visual Code, e.g.
search results.

» User Manual: Was still using old option name for - - onefi | e-t enpdi r - spec that has since been
made not OS specific, with even the OS specific name being removed.

« Standalone: Do not include data files scanned with si t e- packages or __pycache__ folders. This
should make it easier to use --i nclude-data-file=./**.qm :. when you have a virtualenv
living in the same folder.

» Onefile: Added check for compression ability before starting the compilation to inform the user
immediately.

» Release: Mark macOS as supported in PyPI categories. This is of course true for a long time already.

» Release: Mark Android as supported in PyPI categories as well. With some extra work, it can be
used.

e User Manual: Added section pointing to and explaining compilation reports. This has become
extremely useful even if still somewhat work in progress.

» User Manual: Added table with included custom reports, at this time only the license reports, which is
very rough shape and needs contributors for good looks and content.

Cleanups

* Plugins: Moved parts of the pywebvi ew plugin that pertain to the DLLs and data files to package
configuration.

» Made the user query code a dedicated function, so it can be reused and more consistent across its
uses in Nuitka. With a default that is proposed to a user, and a default that applies if used
non-interactively. We will switch all prompts to using this.

» Code generation for module, class and function frames is now unified, removing duplication while
also becoming more flexible. For generators this work has been started, but is not yet completed.

» Nodes exposing used modules now implement the same virtual method providing a list of them.

» Make sure to pass t upl e values rather than | i st values from the tree building stage and node
optimization creating new nodes. This allows us to drop conversions previously done inside of nodes.

Tests

» Do not enable deprecated plugins, the warnings about them break tests.

 Ignore Qt binding warnings in tests, some are less supported than PySi de6 or commercial
PySi de2.

Summary

The focus of this release was first a major restructuring of how children are handled in the node tree. The
generated code opens up the possibility of many more scalability improvements in the coming releases.
The pure iteration speed for the node tree will make compile times for the Python part even shorter in
coming releases. Scalability will be a continuous focus for some releases.

Then the avoiding of API calls is a huge benefit for many platforms that are otherwise at a disadvantage.
This is also only started. We will aim at getting more complex programs to do next to none of these, so far
only some tests are working after program start without them, which is of course big progress. We will
progress there with future releases as well.

Catching up on problems that previous migrations have not discovered is also a huge step forward to
restoring the performance supremacy, that was not there anymore in extreme cases.

The Yaml package configuration work is showing its fruits. More people have been able to contribute
changes for ant i - bl oat or missing dependencies than ever before.

Some part of the Python 3.11 work have positively influenced things, e.g. with the frame cleanup. THe
focus of the next release cycle shall be to add support for it. Right now, generator frames need a cleanup
to be finished, to also become better and working with 3.11 at the same time. Where possible, work to
support 3.11 was also conducted as a cleanup action, or reduction of the technical debts.

All'in all, it is fair to say that this release is a big leap forward in all kinds of ways.

Nuitka Release 1.3

This release contains a large amount of performance work, that should specifically be useful on Windows,
but also generally. A bit of scalability work has been applied, and as usual many bug fixes and small
improvements, many of which have been in hotfixes.

Bug Fixes

* macOS: Framework build of PySide6 were not properly supporting the use of WebEngine. This
requires including frameworks and resources in new ways, and actually some duplication of files,
making the bundle big, but this seems to be unavoidable to keep the signature intact.

» Standalone: Added workaround for dot env. Do not insist on compiled package directories that may
not be there in case of no data files. Fixed in 1.2.1 already.

» Python3.8+: Fix, the ctypes. CDLL node attributes the wi nnbde argument to Python2, which is
wrong, it was actually added with 3.8. Fixed in 1.2.1 already.

» Windows: Attempt to detect corrupt object file in MSVC linking. These might be produced by cl . exe
crashes or cl cache bugs. When these are reported by the linker, it now suggests to use the
- - cl ean- cache=ccache which will remove it, otherwise there would be no way to cure it. Added in
1.2.1 already.

« Standalone: Added data files for f ol i umpackage. Added in 1.2.1 already.
« Standalone: Added data files for br anca package. Added in 1.2.1 already.

* Fix, some forms t ry that had exiting f i nal | y branches were tracing values only assigned in the
t ry block incorrectly. Fixed in 1.2.2 already.

« Alpine: Fix, Also include | i bst dc++ for Alpine to not use the system one which is required by its
other binaries, much like we already do for Anaconda. Fixed in 1.2.2 already.

« Standalone: Added support for latest pyt or ch. One of our workarounds no longer applies. Fixed in
1.2.2 already.

« Standalone: Added support for webcam on Windows with opencv- pyt hon. Fixed in 1.2.3 already.

« Standalone: Added support for pytorch_Iightning, it was not finding metadata for rich
package. Fixed in 1.2.4 already.

For the release we found that pyt orch_I i ght ni ng may not find ri ch installed. Need to guard
ver si on() checks in our package configuration.

« Standalone: Added data files for dash package. Fixed in 1.2.4 already.

» Windows: Retry replace cl cache entry after a delay, this works around Virus scanners giving
access denied while they are checking the file. Naturally you ought to disable those for your build
space, but new users often don't have this. Fixed in 1.2.4 already.

« Standalone: Added support for sci py 1.9.2 changes. Fixed in 1.2.4 already.

« Catch corrupt object file outputs from gcc as well and suggest to clean cache as well. This has been
observed to happen at least on Windows and should help resolve the ccache situation there.

» Windows: In case cl cache fails to acquire the global lock, simply ignore that. This happens
sporadically and barely is a real locking issue, since that would require two compilations at the same
time and for that it largely works.

» Compatibility: Classes should have the f _| ocal s set to the actual mapping used in their frame. This
makes Nuitka usable with the nul t i di spat ch package which tries to find methods there while the
class is building.

» Anaconda: Fix, newer Anaconda versions have TCL and Tk in new places, breaking the t k-i nt er
automatic detection. This was fixed in 1.2.6 already.

» Windows 7: Fix, onefile was not working anymore, a new APl usage was not done in a compatible
fashion. Fixed in 1.2.6 already.

» Standalone: Added data files for | ar k package. Fixed in 1.2.6 already.

 Fix, pkguti | .iter_nodul es without arguments was given wrong compiled package names. Fixed
in 1.2.6 already.

» Standalone: Added support for newer cl r DLLs changes. Fixed in 1.2.7 already.

« Standalone: Added workarounds for t ensor f | ow. conpat namespace not being available. Fixed in
1.2.7 already.

« Standalone: Added support for t kext r af ont . Fixed in 1.2.7 already.

» Python3: Fix, locals dict test code testing if a variable was present in a mapping could leak
references. Fixed in 1.2.7 already.

« Standalone: Added support for t i nrmpackage. Fixed in 1.2.7 already.

* Plugins: Add t | s to list of sensible plugins. This enables at least pyqt 6 plugin to do networking with
SSL encryption.

« Standalone: Added implicit dependencies of skl ear n. cl ust er.

» FreeBSD: Fix, fcopyfil e is no longer available on newest OS version, and include files for
sendfi | e have changed.

* MSYS2: Add back support for MSYS Posix variant. Now onefile works there too.

* Fix, when picking up data files from command line and plugins, different exclusions were applied.
This has been unified to get better coverage for avoiding to include DLLs and the like as data files.
DLLs are not data files and must be dealt with differently after all.

New Features

» Ul: Added new option for cache disabling - - di sabl e- cache that accepts al | and cache names
like ccache, byt ecode and on Windows, dl | - dependenci es with selective values.

Note

The cl cache is implied in ccache for simplicity.

*Ul: With the same values as --disabl e-cache Nuitka may now also be called with
- - cl ean- cache in a compilation or without a filename argument, and then it will erase those caches
current data before making a compilation.

* macOS: Added --nacos-app-node option for application bundles that should run in the
background (backgr ound) or are only a Ul element (ui - el enent).

* Plugins: In the Nuitka package configuration files, the when allows now to check if a plugin is active.
This allowed us to limit console warnings to only packages whose plugin was activated.

* Plugins: Can now mark a plugin as a GUI toolkit responsible with the consequence that other toolkit
detector plugins are all disabled, so when using tk-i nter no longer will you be asked about
Py Si de6 plugin, as that is not what you are using apparently.

* Plugins: Generalized the GUI toolkit detection to include t k- i nt er as well, so it will nhow point out
that wx and the Qt bindings should be removed for best results, if they are included in the
compilation.

* Plugins: Added ability to provide data files for macOS Resour ces folder of application bundles.

* macOS: Fix, Qt WebEngine was not working for framework using Python builds, like the ones from
PyPI. This adds support for both PySide2 and PySide6 to distribute those as well.

* MSYS2: When asking a CPython installation to compress from the POSIX Python, it crashed on the
main filename being not the same.

* Scons: Fix, need to preserve environment attached modes when switching to winlibs gcc on
Windows. This was observed with MSYS2, but might have effects in other cases too.

Optimization

» Python3.10+: When creating dictionaries, lists, and tuples, we use the newly exposed dictionary free
list. This can speedup code that repeatedly allocates and releases dictionaries by a lot.

» Python3.6+: Added fast path to dictionary copy. Compact dictionaries have their keys and values
copied directly. This is inspired by a Python3.10 change, but it is applicable to older Python as well,
and so we did.

» Python3.9+: Faster compiled object creation, esp. on Python platforms that use a DLLs for libpython,
which is a given on Windows. This makes up for core changes that went unnoticed so far and should
regain relative speedups to standard Python.

» Python3.10+: Faster float operations, we use the newly exposed float free list. This can speed up all
kinds of float operations that are not doable in-place by a lot.

» Python3.8+: On Windows, faster object tracking is now available, this previously had to go through a
DLL call, that is now removed in this way as it was for non-Windows only so far.

» Python3.7+: On non-Windows, faster object tracking is now used, this was regressed when adding
support for this version, becoming equally bad as all of Windows at the time. However, we now
managed to restore it.

» Optimization: Faster deep copy of mutable tuples and list constants, these were already faster, but
e.g. went up from 137% gain factor to 201% on Python3.10 as a result. We now use guided a deep
copy, which then has the information, what types it is going to copy, removing the need to check
through a dictionary.

» Optimization: Also have own allocator function for fixed size objects. This accelerates allocation of
compiled cells, dictionaries, some iterators, and lists objects.

» More efficient code for object initialization, avoiding one DLL calls to set up our compiled objects.

» Have our own PyCbj ect _Si ze variant, that will be slightly faster and avoids DLL usage for | en and
size hints, e.g. in container creations.

« Avoid using non-optimal nal | oc related macros and functions of Python, and instead of the fasted
form generally. This avoids Python DLL calls that on Windows can be particularly slow.

« Scalability: Generated child mixins are now used for the generated package metadata hard import
nodes calls, and for all instances of single child tuple containers. These are more efficient for creation
and traversal of the tree, directly improving the Python compile time.

« Scalability: Slightly more efficient compile time constant property detections. For f r ozenset there
was not need to check for hashable values, and some branches could be replaced with e.g. defining
our own El | i psi sType for use in short paths.

» Windows: When using MSVC and LTO, the linking stage was done with only one thread, we now use
the proper options to use all cores. This is controlled by - - j obs much like C compilation already is.
For large programs this will give big savings in overall execution time. Added in 1.2.7 already.

* Anti-Bloat: Remove the use of pyt est for dash package compilation.

» Anti-Bloat: Remove the use of IPython for dot env, pyvi sta, python_utils, and trinesh
package compilation.

 Anti-Bloat: Remove IPython usage in r dki t improving compile time for standalone by a lot. Fixed in
1.2.7 already.

* Anti-Bloat: Avoid ker as testing framework when using that package.

Organisational

* Plugins: The nunpy plugin functionality was moved to Nuitka package configuration, and as a result,
the plugin is now deprecated and devoid of functionality. On non-Windows, this removes unused
duplications of the nunpy. cor e DLLs.

» User Manual: Added information about macOS entitlements and Windows console. These features
are supported very well by Nuitka, but needed documentation.

» Ul: Remove alternative options from - - hel p output. These are there often only for historic reasons,
e.g. when an option was renamed. They should not bother users reading them.

* Plugins: Expose the mnemonics option to plugin warnings function, and use it for pysi de2 and
pyqt 5 plugins.

* Quality: Detect trailing/leading spaces in Nuitka package configuration descri pti on values during
their automatic check.

« Ul: Detect the CPython official flavor on Windows by comparing to registry paths and consider real
prefixes, when being used in virtualenv more often, e.g. when checking for CPython on Apple.

« Ul: Enhanced - - ver si on output to include the C compiler selection. It is doing that respecting your
other options, e.g. - - cl ang, etc. so it will be helpful in debugging setup issues.

Ul: Some error messages were using % rather than ' %' to output file paths, but that escaped
backslashes on Windows, making them look worse, so we changed away from this.

 Ul: Document more clearly what - - out put - di r actually controls.
» macOS: Added options hint that the Foundat i on module requires bundle mode to be usable.

« Ul: Allow using both - - f ol | ow-i nports and - - nof ol | ow i nport s on command line rather than
erroring out. Simply use what was given last, this allows overriding what was given in project options
tests should the need arise.

* Reports: Include plugin reasons for pre and post load modules provided. This solves a TODO and
makes it easier to debug plugins.

« Ul: Handle - - i ncl ude- package- dat a before compilation, removing the ability to use pattern. This
makes it easier to recognize mistakes without a long compilation and plugins can know them this way
too.

« GitHub: Migration workflows to using newer actions for Python and checkout. Also use newer Ubuntu
LTS for Linux test runner.

« Ul: Catch user error of running Nuitka with the pyt honw binary on Windows.

» Ul: Make it clear that MSYS2 defaults to - - m ngw64 mode. It had been like this, but the - - hel p
output didn't say so.

 GitHub: Updated contribution guidelines for better readability.

 GitHub: Use organisation URLs everywhere, some were still pointing to the personal rather than the
organisation one. While these are redirected, it is hot good to have them like this.

» Mastodon: Added link to https://fosstodon.org/@kayhayen to the PyPI package and User Manual.

Cleanups

» Nodes for hard import calls of package meta data now have their base classes fully automatically
created, replacing what was previously manual code. This aims at making them more consistent and
easier to add.

» When adding the new Scons file for C compiler version output, more values that are needed for both
onefile and backend compilation were moved to centralized code, simplifying these somewhat again.

* Remove unused nai n_nodul e tag. It cannot happen that a module nhame matches, and still thinks
ofiitself as __mai n__ during compilation, so that idea was unnecessary.

» Generate the dictionary copy variants from template code rather than having manual duplications.
For di ct. copy(), for deep copy (needed e.g. when there are escaping mutable keyword argument
constant values in say a function call), and for * * kw value preparation in the called function (checking
argument types), we have had diverged copies, that are now unified in a single Jinja2 template for
optimization.

https://fosstodon.org/@kayhayen

* Plugins: Also allow providing generators for providing extra DLLs much like we already do for data
files.

» Naming of basic tests now makes sure to use a Test suffix, so in Visual Code selector they are more
distinct from Nuitka code modules.

» Rather than populating empty dictionaries, helper code now uses factory functions to create them,
passing keys and values, and allowing values to be optional, removing noisy i f branches at call side.

* Removed remaining Py Dev annotations, we don't need those anymore for a long time already.

 Cleanup, avoid lists objects for ctypes defined functions and their ar gl i st, actually tuples are
sufficient and naturally better to use.

« Spelling cleanups were resumed, as an ongoing action.

Tests

» Added construct test that demonstrates the mutable constant argument passing for lists to see the
performance gains in this area too.

» Made construct runner - - di f f output usable for interactive usage.

» Repaired Nuitka Speedcenter, but it's not yet too usable for general consumption. More work will be
needed there, esp. to make comparisons more accessible for the general public.

Summary

The major achievement of this release was the removal of the long lived nunpy plug-in, replacing it with
package based configuration, that is even more optimal and works perfectly across all platforms on both
important package installation flavors.

This release has a lot of consolidation efforts, but also as a result of 3.11 investigations, addresses a lot of
issues, that have crept in over time with Python3 releases since 3.7, each time, something had not been
noticed. There will more need for investigation of relative performance losses, but this should address the
most crucial ones, and also takes advantage of optimization that had become with 3.10 already.

There is also some initial results from cleanups with the composite node tree structure, and how it is
managed. Generated "child(ren) having" mixins, allow for faster traversal of the node tree.

Some technical things also improved in Scons. Using multiple cores in LTO with MSVC with help this a lot,
although for big compilations - - | t o=no probably has to be recommended still.

More ant i - bl oat work on more packages rounds up the work.

For macOS specifically, the WebEngine support is crucial to some users, and the new
- - macos- app- node with more GUI friendly default resolves long standing problems in this area.

And for MSYS2 and FreeBSD, support has been re-activated, so now 4 OSes work extremely well (others
too likely), and on those, most Python flavors work well.

The performance and scalability improvements are going to be crucial. It's a pity that 3.11 is not yet
supported, but we will be getting there.

Nuitka Release 1.2

This release contains a large amount of new compatibility features and a few new optimization, while again
consolidating what we have. Scalability should be better in many cases.

Bug Fixes

» Standalone: Added implicit dependency of t hi nc backend. Fixed in 1.1.1 already.

» Python3.10: Fix, mat ch statements with unnamed star matches could give incorrect results. Fixed in
1.1.1 already.

mat ch x:
case [*_, vy]:
y had wrong val ue here.

» Python3.9+: Fix, file reader objects must convert to st r objects. Fixed in 1.1.1 already.

This was the "repr rather than a path value, but it must be usable
like that too.
str(inmportlib.resources.files("package nane").joinpath("lala"))

* Standalone: Added data file of echopype package. Fixed in 1.1.1 already.

* Anti-Bloat: Remove non-sense warning of compiled pyscf . Fixed in 1.1.1 already.

» macOS: Fix, in LTO mode using i nchi n can fail, switch to source mode for constants resources.
Fixed in 1.1.2 already.

» Standalone: Add support for sv_t t k module. Fixed in 1.1.2 already.

* macOS: Fix, was no longer correcting | i bpyt hon path, this was a regression preventing CPython
for creating properly portable binary. Fixed in 1.1.2 already.

» macOS: Fix, main binary was not included in signing command. Fixed in 1.1.3 already.

» Standalone: Added implicit dependency of orj son. Due to zonei nf o not being automatically
included anymore, this was having a segfault. Fixed in 1.1.3 already.

* Standalone: Added support for new shapel y. Fixed in 1.1.4 already.

» macOS: Ignore extension module of non-matching architecture. Some wheels contain extension
modules for only x86_64 arch, and others contain them only for ar n64, preventing the standalone
build. Fixed in 1.1.4 already.

* Standalone: Added missing skl ear n dependencies. Fixed in 1.1.4 already.

* Fix, packages available through relative import paths could be confused with the same ones imported
by absolute paths. This should be very hard to trigger, by normal users, but was seen during
development. Fixed in 1.1.4 already.

« Standalone: Apply import hacks for pywi n32 modules only on Windows, otherwise it can break e.g.
macOS compilation. Fixed in 1.1.4 already.

» Windows: More robust DLL dependency caching, otherwise e.g. a Windows update can break things.
Also consider plugin contribution, and Nuitka version, to be absolutely sure, much like we already do
for bytecode caching. Fixed in 1.1.4 already.

* Standalone: Fix, seabor n needs the same workaround as sci py for corruption with MSVC. Fixed in
1.1.4 already.

« Ul: Fix, the opt i ons- nanny was no longer functional and therefore failed to warn about non working
options and package usages. Fixed in 1.1.5 already.

» macOS: Do not use extension modules of non-matching architecture. Fixed in 1.1.5 already.
» Windows: Fix, resolving symlinks could fail for spaces in paths. Fixed in 1.1.6 already.
* Standalone: Added missing DLL for | i ght gbmmodule. Fixed in 1.1.6 already.

» Compatibility: Respect super module variable. It is now possible to have a module level change of
super but still get compatible behavior with Nuitka. Fixed in 1.1.6 already.

» Compatibility: Make sure we respect super overloads in the builtin module. Fixed in 1.1.6 already.

* Fix, the anti-bloat replacement code for nunpy. t est i ng was missing a required function. Fixed in
1.1.6 already.

e Fix, i mportlib.inport_ nodul e static optimization was mishandling a module name of . with a
package name given. Fixed in 1.1.6 already.

» macOS: Fix, some extension modules use wrong suffixes in self references, we need to not complain
about this kind of error. Fixed in 1.1.6 already.

* Fix, do not make ctypes. w ntypes a hard import on non-Windows. Nuitka asserted against it
failing, where some code handles it failing on non-Windows platforms. Fixed in 1.1.6 already.

» Standalone: Added data files for vedo package. Fixed in 1.1.7 already.

* Plugins: Fix, the gi plugin did always set G _TYPELI B_PATH even if already present from user
code. Also it did not handle errors to detect its value during compile time. Fixed in 1.1.7 already.

« Standalone: Added missing dependencies for sql al cheny to have all SQL backends working. Fixed
in 1.1.7 already.

» Added support Nixpkgs's default non-writable HOVE directory. Fixed in 1.1.8 already.

* Fix, distribution metadata name and package name need not align, need to preserve the original
looked up name from i nportli b. netadat a. di stri buti on call. Fixed in 1.1.8 already.

» Windows: Fix, catch usage of unsupported CLCACHE MEMCACHED mode with MSVC compilation. It is
just unsupported.

» Windows: Fix, file version was spoiled from product version if it was the only version given.
» Windows: The default for file description in version information was not as intended.

* Plugins: Workaround for PyQt5 as contained in Anaconda providing wrong paths from the build
machine.

» macOS: After signing a binary with a certificate, compiling the next one was crashing on a warning
about initially creating an ad-hoc binary.

 Fix, detect case of non-writable cache path, make explaining error exit rather than crashing
attempting to write to the cache.

» macOS: Added support for pyobj c in version 9.0 or higher.

New Features

» Python3.11: For now prevent the execution with 3.11 and give a warning to the user for a not yet
supported version. This can be overridden with - - exper i ment al =pyt hon311 but at this times will
not compile anything yet due to required and at this time missing core changes.

*» macOS: Added option --nacos-sign-notarization that signs with runtime signature, but
requires a developer certificate from Apple. As its name implies, this is for use with notarization for
their App store.

* DLLs used via del vewheel were so far only handled in the zng plugin, but this has been
generalized to cover any package using it. With that, e.g. shapel y just works. This probably helps
many other packages as well.

* Added __conpiled___and __conpi |l ed_const ant __ attributes to compiled functions.

With this, it can be decided per function what it is and bridges like pyobj ¢ can use it to create better
code on their side for constant value returning functions.

» Added support _i nf o check to Nuitka package format. Make it clear that pyobj ¢ is only supported
after 9. 0 by erroring out if it has a too low version. It will not work at all before that version added
support in upstream. Also using this to make it clear that opencv- pyt hon is best supported in
version 4.6 or higher. It seems e.g. that video capture is not working with 4.5 at this time.

* Added - -report-tenpl ate which can be used to provide Jinja2 templates to create custom
reports, and refer to built-in reports, at this time e.g. a license reports.

Optimization

» Trust the absence of a few selected hard modules and convert those to static raises of import errors.

« For conditional nodes where only one branch exits, and the other does not, nho merging of the trace
collection should happen. This should enhance the scalability and leads to more static optimization
being done after these kinds of branches on variables assigned in such branches.

if conditionl:
a=1

el se:
rai se KeyError

if condition2:
b =1

Here, "a" is known to be assigned, but before it was only "nmaybe"
assigned, like "b" would have to be since, the branch may or nay
not have been taken.

» Do not merge tried blocks that are aborting with an exception handler that is not aborting. This is very
similar to the change for conditional statements, again there is a control flow branch, that may have to
be merged with an optional part, but sometimes that part is not optional from the perspective of the
code following.

try:
potentially raising, but not aborting code
return sonething() # this aborts
except Exception:
a=1

try:
potentially raising, but not aborting code
except Exception:
b =1

Here, "a" is known to be assigned, but before it was only "mybe"
assigned, like "b" would have to be since, the branch may or may
not have been taken.

» Exception matches were annotating a control flow escape and an exception exit, even when it is
known that no error is possible to be happening that comparison.

try:

except InportError: # an exception match is done here, that cannot raise

e Trust i nportlib. net adat a. PackageNot FoundErr or to exist, with this some more metadata
usages are statically optimized. Added in 1.1.4 already.

» Handle constant values from trusted imports as trusted values. So far, trusted import values were on
equal footing to regular variables, which on the module level could mean that no optimization was
done, due to control flow escapes happening.

Known to be Fal se at conpile tine.
fromtyping inport TYPE_CHECKI NG

i f TYPE_CHECKI NG
from sonmet hing i mport normally_unused_unl ess_type_checki ng

In this code example above, the static optimization was not done because the value may be changed
on the outside. However, for trusted constants, this is no longer assumed to be happening. So far
onlyif typing. TYPE_CHECKI NG using code had been optimized.

* macOS: Use sections for main binary constants binary blob rather than C source code (which we
started in a recent hotfix due to LTO issues with inchin) and onefile payload. The latter enables
notarization of the onefile binary as well and makes it faster to unpack as well.

» Windows: Do not include DLLs from SxS. For PyPI packages these are generally unused, and self
compiled modules won't be SxS installations either. We can add it back where it turns out needed.
This avoids including contt| 32 and similar DLLs, which ought to come from the OS, and might
impede backward compatibility only.

» Disabled C compilation of very large azur e modules.

» The per module usage information of other modules was only updated in first pass was used in later
passes. But since they can get optimized away, we have to update every time, avoiding to still include
unused modules.

* Anti-Bloat: Fight the use of dask in xarray and pi nt, adding a mode controlling its use. This is
however still incomplete and needs more work.

* Fix, the anti-bloat configuration for ri ch. pretty introduced a Synt axEr r or that went unnoticed.
In the future compilation will abort when this happens.

* Standalone: Added support for including DLLs of I | v i t e. bi ndi ng package.

* Anti-Bloat: Avoid using pyw n32 through pkg_r esour ces import. This seems rather pointless and
follows an optimization done for the inline copy of Nuitka already, the ct ypes code path works just
fine, and this may well be the only reason why pyw n32 is included, which is by itself relatively large.

* Cache directory contents when scanning for modules. The sys. pat h and package directories were
listed over and over, wasting time during the import analysis.

* Optimization: Was not caching not found modules, but retrying every time for each usage, potentially
wasting time during import analysis.

* Anti-Bloat: Initial work to avoid pyt est in patsy, it is however incomplete.

Organisational

» User Manual: Explain how to create 64/32 bits binaries on Windows, with there being no option to
control it, this can otherwise be a bit unobvious that you have to just use the matching Python binary.

* Ul: Added an example for a cached onefile temporary location spec to the help output of
--onefil e-tenpdir-spec to make cached more easy to achieve in the proper way.

* Ul: Quote command line options with space in value better, no need to quote an affected command
line option in its entirety, and it looks strange.

» macOS: Catch user error of disabling the console without using the bundle mode, as it otherwise it
has no effect.

» macOS: Warn about not providing an icon with disabled console, otherwise the dock icon is empty,
which just looks bad.

 Debian: Also need to depend on gl ob2 packages which the yaml engine expects to use when
searching for DLLs.

« Debian: Pertain inline copies of modules in very old builds, there is e.g. no gl ob2 for older releases,
but only recent Debian releases need very pure packages, our backport doesn't have to do it right.

» macOS: More reliable detection of Homebrew based Python. Rather than checking file system via its
si t ecust oni ze contents. The environment variables are only present to some usages.

« Installations with pip did not include all license, README files, etc. which however was intended.
Also the attempt to disable bytecode compilation for some inline copies was not effective yet.

* Renamed pyznmg plugin to del vewheel as it is now absolutely generic and covers all uses of said
packaging technique.

 Caching: Use cache directory for cached downloads, rather than application directory, which is just
wrong. This will cause all previously cached downloads to become unused and repeated.

* Quality: Updated development requirements to latest bl ack, i sort,yam | i nt,andt gdm
« Visual Code: Added recommendation for extension for Debian packaging files.

» Added warning for PyQ 5 usage, since its support is very incomplete. Made the PyQ 6 warning more
concrete. It seems only Qt threading does not work, which is of course still significant. Instead
PySide2 and PySide6 are recommended.

« Ul: Have dedicated options group for onefile, the spec for the temporary files is not a Windows option
at all anymore. Also move the warnings group to the end, people need to see the inclusion related
group first.

» User Manual: Explain how to create 64/32 bits binaries on Windows, which is not too obvious.

Cleanups

» Moved PySide plugins DLL search extra paths to the Yaml configuration. In this way it is not
dependent on the plugin being active, avoiding cryptic errors on macOS when they are not found.

* Plugins: Avoid duplicate link libraries due to casing. We are now normalizing the link library names,
which avoids e.g. Shel | 32 and shel | 32 to be in the result.

» Cleanups to prepare a PyLint update that so otherwise failed due to encountered issues.

* Plugins: Pass so called build definitions for generically. Rather than having dedicated code for each,
and plugins can now provide them and pass their index to the scons builds.

« Onefile: Moved file handling code to common code reducing code duplication and heavily cleaning up
the bootstrap code generally.

 Onefile: The CRC32 checksum code was duplicated between constants blob and onefile, and has
moved to shared code, with an actual interface to take the checksum.

* Spelling cleanups resumed, e.g. this time more clearly distinguishing between run tinme and
runti ne, the first is when the program executes, but the latter can be an environment provided by a
C compiler.

Tests

» Tests: Added test that applies anti-bloat configuration to all found modules.

* Tests: Tests: Avoid including unused nui t ka. t ool s code in reflected test, which should make it
faster. The compiler itself doesn't use that code.

Summary

This release is again mainly a consolidation of previous release, as well as finishing off existing features.
Optimization added in previous releases should have all regressions fixed now, again with a strong series
of hotfixes.

New optimization was focused around findings with static optimization not being done, but still resulting in
general improvements. Letting static optimization drive the effort is still paying off.

Scalability has seen improvements through some of the optimization, this time a lot less anti-bloat work
has been done, and some things are only started. The focus will clearly now shift to making this a
community effort. Expect postings that document the Yaml format we use.

For macOS specifically, with the sections work, onefile should launch faster, should be more compatible
with signing, and can now be used in notarization, so for that platform, things are more round.

For Windows, a few issues with version information and onefile have been addressed. We should be able
to use memory mapped view on this platform too, for faster unpacking of the payload, since it doesn't have
to go through the file anymore.

Nuitka Release 1.1

This release contains a large amount of new compatibility features, while consolidating what we have.
Scalability should be better in some cases.

Bug Fixes

« Standalone: Enhanced dependency scan of dependent DLLs to forward the containing package, so it
can be searched in as well. This fixed at least PySide on macOS. Fixed in 1.0.1 already.

» macOS: Enhanced dependency detection to use normalized paths and therefore to be more stable.
Fixed in 1.0.1 already.

» Standalone: Added support for the networ kx package which uses new support for a function
decorator trying to copy function default values. Fixed in 1.0.1 already.

« Standalone: Include data files for pandas. i o. f or mat package. This one has Jinja2 template files
that will be needed when using this package.

» Python3.10: Fix, could crash in case a class was not giving mat ch arguments, but the user did
attempt to match them. This happened e.g. with r ange objects. Fixed in 1.0.2 already.

« Standalone: Added data files needed for pyenchant package. Fixed in 1.0.2 already.

» Python3.10: Fix, matching sequence with as assignments in them didn't check for sub-pattern given.
Fixed in 1.0.2 already.

« Standalone: Fix, do not attempt to list non-existent PATH entries on Windows, these can crash the
dependency detection otherwise. Fixed in 1.0.2 already.

 Standalone: Fix, on newer Linux, | i nux-vdso. so.1 appears in output of | dd in a way that
suggests it may exist, which of course it does not, this is a kernel virtual DLL. Fixed in 1.0.3 already.

* Fix, comparison expressions could give wrong results as a regression of the new release. Fixed in
1.0.3 already.

* Fix, on older Python (before 3.6), it could crash on data files defined in the Yaml config. Fixed in 1.0.4
already.

* Fix, binary operations could give wrong results as a regression of the new release. Fixed in 1.0.4
already.

« Standalone: Added support for pyzbar package. Fixed in 1.0.5 already.

« Standalone: Fix, empty directory structures were not working anymore due to a regression in the last
release. Fixed in 1.0.5 already.

» Windows: Fix, detected Pythons from Windows registry may of course fail to execute, because they
were e.g. manually deleted. This would show e.g. in onefile compression. Fixed in 1.0.5 already.

* Onefile: Fix, using a too old zst andar d without finding another Python with a suitable one, lead to
run time unpacking errors. Fixed in 1.0.6 already.

* Fix, the inline copy of Jinja2 imported | oggi ng for no good reason, which lead to errors for users
who have a module of the same name, that it was then using instead. Fixed in 1.0.6 already.

* Fix, disable LTO mode for Anaconda Python, it is known to not work. Fixed in 1.0.6 already.
* Linux: Fix, no need to insist on icon path for onefile anymore. Fixed in 1.0.6 already.

« Standalone: Fix, the new version certi fi was not working on Windows and 3.10 anymore. Fixed in
1.0.7 already.

» Standalone: Added support for more r api df uzz implicit dependencies. Fixed in 1.0.8 already.
« Standalone: Added support for vi bor a. Fixed in 1.0.8 already.

* Fix, must not expose module name objects to Python import hooks. Fixed in 1.0.8 already.

* Fix, calls to bound methods of string values generated incorrect calls. Fixed in 1.0.8 already.

* Fix, do not crash in version detection on gcc error exit querying of its version.

« Standalone: Added back support for older versions of the pyznt package.

« Standalone: Ignore PATH elements that fail to be listed as a directory. It appears e.g. on Windows,
folders can exist, despite being unusable in fact. These can then cause errors in DLL dependency
scan. Also avoid having PATH set when executing dependency walker, it appears to use it even if not
asked to.

» Standalone: Added support for t zI ocal package.
» Python3.10: Fix, conpl ex literals were not working for mappings in nmat ch statements.

* Fix, bool built-in expressions were not properly annotating exception raises, where the value cannot
raise on truth check.

« Standalone: Added support for the agschedul er package. Plugins must be done manually still with
explicit - - i ncl ude- modul e calls.

« Standalone: Added support for using shapel y in Anaconda as well.

 Debian: Fix, versioned dependency for | i bzst d should also be in package, this should restore
Nuitka package builds for Debian Jessie.

« Standalone: Added support for vt k package.

» Windows: Fix, avoid using pywi n32 in our appdirs usage, it might be a broken installation and is
optional to appdi r s anyway, which then will fallback to using ct ypes to make the lookups.

« Standalone: Added support for more pandas versions.

« Standalone: Adding support for nkl implicit DLL usage in Anaconda.

« Standalone: Added support for j sonschemna with Python 3.10.

« Standalone: Added support for pyfi gl et fonts data files.

* Scons: Avoid gcc linker command line length limits for module mode too.
« Standalone: Added data file of di st ri but ed. confi g.

« Standalone: Add support for cv2 GUI on Linux, the Qt platform plugin is now included.

e Fix, the anti-bloat configuration for nunpy.testing tools exposed an incomplete
suppr ess_war ni ngs replacement that could lead to errors in some functions of nunpy.

« Standalone: Fix DLL dependency caching on Windows, need to consider DLL content of course too.
« Standalone: Added missing dependency for t or chvi si on.

» Standalone: Added support for t or chvi si on on Anaconda as well.

« Standalone: Added support for panda3d.

» Windows: Fix, need to make sure to use UTF-8 encoding for define values like company name.
Otherwise the local system encoding is used, but the C compiler expects UTF-8 in wide literals. This
may crash of give wrong results.

« Standalone: Added f acenet _t or ch data files.
» Anaconda: Include | i bst dc++. so on Linux or else e.g. cv2 will not work with system library.

» Windows: Fix, can have file version without a company name.

New Features

» Python3.10: Added support for assignments in nmat ch alternatives | syntax.

» Compatibility: Register Nuitka meta path based loader with pkg_resour ces such that checking
resource presence with has_resource works too. This should also add support for using
j inja2. PackagelLoader, previously only jinja2. Fil eSyst enmLoader worked. Fixed in 1.0.1
already.

» Compatibility: Make function __def aul ts__ attribute size changeable. For a long time, this was a
relatively big issue for some packages, but now this is supported as well.

» Compatibility: Added support for i mportlib.netadata.distribution and
i mportlib_netadata. di stribution functions as welli nportl i b. met adat a. net adat a and
i mportlib_netadat a. net adat a functions.

« Onefile: Added support for including other binaries than the main executable in the payload. So far on
non-Windows, we only made the main binary executable, hard coded, and nothing else. But Some
things, e.g. Qt web engine, do require binaries to be used, and these no longer have the issue of
missing X-bit on macOS and Linux now.

« Standalone: Resolve executable path when called through symbolic link, which makes file resolutions
work properly for it, for this type of installing it in 9PATH%

» Python3.9+: Added support fori nportlib. resources. fil es with compiled modules.

It returns traversable objects, which can be used to opens files, checks them, etc. and this e.g. allows
j sonschena to work with Python 3.10, despite bugs in CPython's compatibility layer.

 Ul: Added interface method to specify flename patterns with package data inclusion option, making
--incl ude- package- dat a usable in many more cases, picking the only files or file types you
want. You can now use --i ncl ude- package- dat a=package_nane=*.t xt and select only a
subset of package data files in this way. Before this, it included everything and
--noi ncl ude-dat a-fi | es would have to be used.

» macOS: Make r unt i e signing an experimental option.
« Consistently allow when conditions for all package configuration elements, e.g. also DLLs.

* Plugins: Added method to overload to work on standalone binary specifically. This makes it easier to
only modify that specific binary.

* Plugins: Added support for regular expressions in anti-bloat replacements, with new
repl acenent s_r e code.

Optimization

» Add support for os. path hard module imports along with specialized nodes for file tests
0os. path.exists, os.path.isfile, and os.path.isdir aiming at tracking used files,
producing warnings about missing files in the future.

« Standalone: Do not include concurrent standard library package automatically. This avoids the
inclusion of mul ti pr ocessi ng which we essentially had reverted during last release cycle.

« Standalone: Do not include zonei nf o standard library package automatically. It has many data files
and is often not used (yet).

« Standalone: Do not include asynci o standard library package automatically anymore.
 Avoid compilation of large generated codes in the asyncua package.

» Compile time optimize pkg_resources.iter_entry_poi nts too, such that these can be used to
resolve plugin modules, which helps with adding support for agschedul er package plugins. Note
that these still need to be manually included with - - i ncl ude- nodul e but now that works.

 For known truth values of the right hand side of and or or conditions, reduce the expression as far as
possible.

» Added dedicated assignment node for hard imports, which then are propagated in classes as well,
allowing for more static optimization for code on the class level.

» Added linker options to make static - - st at i c- 1 i bpyt hon work with clang on Linux as well.

» macOS: Make sure | i bpyt hon is loaded relative to the executable. This is needed for at least
Anaconda Python.

» macOS: Fix, need to search environment specific DLL paths and only then global paths, otherwise
mixed Python versions will not work correctly.

* Anti-Bloat: Remove IPython usage inri ch package.
* Anti-Bloat: Avoid doct est dependency when using pyr ect .
 Anti-Bloat: Some uni t t est removals from pyt or ch using libraries.

» Keep the Scons report items sorted, or else it varies for the hashing of dependencies with Python
versions before 3.6, causing cache misses without need.

Organisational

 Ul: Output the . cnd file created (if any) on Windows, e.g. when run in a virtualenv or for uninstalled
Python versions, it will otherwise not run in accelerated mode, but previously the output suggested to
run the executable directly.

« Ul: Enhanced command line option description of --i ncl ude-pl ugi n-directory which is
frequently misunderstood. That option barely does what people want it to do. Point them to using the
other options that are easy to use and will work.

« Ul: Specified needed Python version for use in - - pyt hon- f or - scons so users can know ahead of
time what versions are suitable.

» Reports: Added information about data files including, optimization times per module, active plugins.

» Debugging: Repaired offline DLL dependency listing tool, such that it can be used during Windows
DLL analysis.

» Make - - xm accept a filename for the node tree dump, and change it so it can be executed in
addition to actual compilation. This way we need not be super-robust about keeping stdout clean, to
not break XML parsing.

* Plugins: Avoid useless warning about PySide2 plugin usage if another Qt plugin is actually selected.

« Ul: Catch error of directories being used as data files where plain files are expected and point out that
other options must be used.

» User Manual: Added section about accessing files in standalone mode too, so people can make sure
it works properly.

* Onefile: Using %a'EMP%folder should not by itself prevent cached onefile mode, only really variable
paths should. People may want to have this as some kind of temporary cache still.

« Ul: Catch user error of using elements, that resolve to absolute values in the middle of path specs, so
using e.g. sonet hi ng/ %°ROGRAMY%is now a mistake caught at compile time. These values can only
be at the start of spec values naturally.

* Quality: Updated to newer version of r st f nt .
« Ul: Nicer error message when a forbidden import is requested as an implicit import by a plugin.

» Python3.11: Adapted to allocator and exception state changes, but more will be needed to compile at
all.

* Visual Code: Find cl ang- f or mat from the recommended C++ extension of Visual Code, which
makes it finally available on macOS easily too.

 Ul: Quote command line argument values as necessary when stating them in the logging. Otherwise
they are not directly usable on the shell and also less readable.

 Debian: Do not list fake modules as used debian packages codes, which could e.g. happen with the
pre-load code of pkg_resour ces if that is from a Debian package. Fake packages should not be
mentioned for these lists though.

* Nuitka-Python: Added support to set link time flags coming from statically included packages.

» For our i sort trick of splitting files in two parts (mostly to setup import paths for nui t ka package),
make sure the second parts starts with a new line.

» Added more usable form - - out put - fi | enane to specify the output filename, the short form has
become barely usable after we switched to enforcing no space separation for command line
arguments.

« Ul: Check if output filename's directory exists ahead of time, and error exit if not, otherwise
compilation crashed only in the very end, trying to create the final result.

» Ul: When exiting with no error code, do not use red color or FATAL error annotation, that is not
justified.

* Quality: Make sure the Yaml auto-format does not change effective contents.

* Quality: Added ability to limit autoformat by file type, which can be handy when e.g. only the yaml files
should be scanned.

» Ul: Removed - - wi ndows-onefi |l e-tenpdi r-spec alias of - -onefil e-tenpdi r-spec option,
it is no longer Windows specific.

Cleanups

* Prefer single quotes rather than double quotes in our package configuration Yaml files, otherwise
esp. regular expressions with escapes become very confusing.

» Move import hacks to general mechanism in Yaml package configuration files. This is for extra paths
from package names or from directory paths relative to the package. This removes special purpose
code from core code paths and allows their re-use.

 Again more spelling cleanups have been done, to make the code cleaner to read and search.

« Unified how plugins treat iteration over their value list, and how the when condition is applied for the
various kinds of sections.

» Output compilation command that failed during coverage taking, which makes it unnecessary to
attempt to reconstruct what happened from test modes.

Tests

» Added coverage for comparisons that need argument swaps.

« Allow more time in onefile keyboard signal test, otherwise it can be a race on slow machines, e.g.
emulated machines.

* Tests: Added support for running a local web server.

Summary

This release is mainly a consolidation of previous release. Optimization added in previous release did in
fact introduce regressions, that needed to be addressed and were cause for relatively many hotfixes.

The Yaml nuitka package configuration feature is getting ever more powerful, but is not one bit more
documented, such that the community as a whole is not yet capable of adding missing dependencies, data
files, DLLs, and even anti-bloat patches.

New optimization was focused around compatibility with very few exceptions, where the non-automatic
standard library work is standing out, and allows for smaller binaries in many cases.

Scalability has seen improvements through a few optimization, but mainly again with anti-bloat work being
done. This is owed to the fact that consolidation was the name of the game.

For Anaconda specifically, a lot more software is covered, and generally, cv2 and t or ch related tools are
now working better, but it seems DLL handling will remain problematic in many instances.

The compilation report contains much more information and is getting there is terms of completeness. At
some point, we should ask for it in bug reports.

Nuitka Release 1.0

This release contains a large amount of new features, while consolidating what we have with many bug
fixes. Scalability should be dramatically better, as well as new optimization that will accelerate some code
quite a bit. See the summary, how this release is paving the way forward.

Bug Fixes

» Python3: Fix, byt es. decode with only errors argument given was not working. Fixed in 0.9.1
already.

*» MSYS2: Fix, the accelerate mode . cnd file was not working correctly. Fixed in 0.9.1 already.

* Onefile: Fix, the bootstrap when waiting for the child, didn't protect against signals that interrupt this
call. This only affected users of the non-public - - onefi | e-t enpdi r option on Linux, but with that
becoming the default in 1.0, this was discovered. Fixed in 0.9.1 already.

* Fix, pkg_r esour ces compile time generated Di st ri but i on values could cause issues with code
that put it into calls, or in tried blocks. Fixed in 0.9.1 already.

« Standalone: Added implicit dependencies of Xl i b package. Fixed in 0.9.1 already.

» macOS: Fix, the package configuration for wx had become invalid when restructuring the Yaml with
code and schema disagreeing on allowed values. Fixed in 0.9.1 already.

* Fix: The str. format with a single positional argument didn't generate proper code and failed to
compile on the C level. Fixed in 0.9.1 already.

* Fix, the type shape of st r . count result was wrong. Fixed in 0.9.1 already.

« Ul: Fix, the warning about collision of just compiled package and original package in the same folder
hiding the compiled package should not apply to packages without an __init__. py file, as those
do not take precedence. Fixed in 0.9.2 already.

» Debugging: Fix, the fallback to | | db from gdb when using the option - - debugger was broken on
anything but Windows. Fixed in 0.9.2 already.

» Python3.8: The module i nportlib. netadat a was not recognized before 3.9, but actually 3.8
already has it, causing the compile time resolution of package versions to not work there. Fixed in
0.9.3 already.

« Standalone: Fix, at least on macOS we should also scan from parent folders of DLLs, since they may
contain sub-directories in their names. This is mostly the case, when using frameworks. Fixed in
0.9.2 already.

» Standalone: Added package configuration for PyQ 5 to require onefile bundle mode on macQOS, and
recommend to disable console for PyQt6. This is same as we already do for PySi de2 and Py Si de6.
Fixed in 0.9.2 already.

« Standalone: Removed stray macOS onefile bundle package configuration for pi ckl e module which
must have been added in error. Fixed in 0.9.2 already.

 Ul: Catch user error of attempting to compile the __i nit__. py rather than the package directory.
Fixed in 0.9.2 already.

* Fix, hard name import nodes failed to clone, causing issues in optimization phase. Fixed in 0.9.2
already.

» Fix, avoid warnings given with gcc 11. Fixed in 0.9.2 already.

* Fix, dictionary nodes where the operation itself has no effect, e.g. di ct. copy were not properly
annotating that their dictionary argument could still cause a raise and have side effects, triggering an
assertion violation in Nuitka. Fixed in 0.9.2 already.

« Standalone: Added pynput implicit dependencies on Linux. Fixed in 0.9.2 already.

* Fix, boolean condition checks on variables converted immutable constant value assignments to
boolean values, leading to incorrect code execution. Fixed in 0.9.2 already.

» Python3.9: Fix, could crash on generic aliases with non-hashable values. Fixed in 0.9.3 already.
dict[str:any]

» Python3: Fix, an iteration over sys. ver si on_i nf o was falsely optimized into a tuple, which is not
always compatible. Fixed in 0.9.3 already.

» Standalone: Added support for xgboost package. Fixed in 0.9.3 already.

« Standalone: Added data file for t ext _uni decode package. Fixed in 0.9.4 already.

» Standalone: Added data files for swagger _ui _bundl e package. Fixed in 0.9.4 already.

 Standalone: Added data files for connexi on package. Fixed in 0.9.4 already.

» Standalone: Added implicit dependencies for skl earn. utils and rapi df uzz. Fixed in 0.9.4
already.

» Python3.10: Fix, the reformulation of nat ch statements could create nodes that are used twice,
causing code generation to assert. Fixed in 0.9.4 already.

* Fix, module objects removed from sys. nodul es but still used could lack a reference to themselves,
and therefore crash due to working on a released module variables dictionary. Fixed in 0.9.5 already.

* Fix, the MSVC compiles code generated for SciPy 1.8 wrongly. Added a workaround for that code to
avoid triggering it. Fixed in 0.9.6 already.

» Fix, calls to str.format where the result is not used, could crash the compiler during code
generation. Fixed in 0.9.6 already.

« Standalone: For DLLs on macOS and Anaconda, also consider the |i b directory of the root
environment, as some DLLs are otherwise not found.

* Fix, allow nonl ocal and gl obal for __cl ass__ to be used on the class level.

* Fix, xr ange with large values didn't work on all platforms. This affected at least Python2 on macOS,
but potentially others as well.

» Windows: When scanning for installed Pythons to e.g. run Scons or onefile compression, it was
attempting to use installations that got deleted manually and could crash.

» macOS: Fix, DLL conflicts are now resolved by checking the version information too, also all cases
that previously errored out after a conflict was reported, will now work.

* Fix, conditional expressions whose statically decided condition picking a branch will raise an
exception could crash the compilation.

Woul d previously crash Nuitka during optimzation.
return 1/0 if os.nane == "nt" else 1/0

* Windows: Make sure we set C level standard file handles too

At least newer subprocess was affected by this, being unable to provide working handles to child
processes that pass their current handles through, and also this should help DLL code to use it as
level.

« Standalone: Added support for pyqt gr aph data files.

« Standalone: Added support for di py by anti-bloat removal of its testing framework that wants to do
unsupported stuff.

« Ul: Could still give warnings about modules not being followed, where that was not true.

* Fix, - -i ncl ude- nodul e was not working for non-automatic standard library paths.

New Features

» Onefile: Recognize a non-changing path from - - onefil e-tenpdi r-spec and then use cached
mode. By default a temporary folder is used in the spec value, make it delete the files afterwards.

The cached mode is not necessarily faster, but it is not going to change files already there, leaving
the binaries there intact. In the future it may also become faster to execute, but right now checking
the validity of the file takes about as long as re-creating it, therefore no gain yet. The main point, is to
not change where it runs from.

« Standalone: Added option to exclude DLLs. You can npw use - - noi ncl ude-dl | s to exclude DLLs
by filename patterns.

The may e.g. come from Qt plugins, where you know, or experimented, that it is not going to be used
in your specific application. Use with care, removing DLLs will lead to very hard to recognize errors.

* Anaconda: Use CondaCC from environment variables for Linux and macOS, in case it is installed.
This can be done with e.g. conda install gcc_linux-64 on Linux or
conda install clang_osx-64 on macOS.

» Added new option - - nowar n- menoni ¢ to disable warnings that use mnemonics, there is currently
not that many yet, but it's going to expand. You can use this to acknowledge the ones you accept,
and not get that warning with the information pointer anymore.

» Added method for resolving DLL conflicts on macOS too. This is using version information and picks
the newer one where possible.

» Added option - - user - package- confi gurati on-fi | e for user provided Yaml files, which can be
used to provide package configuration to Nuitka, to e.g. add DLLs, data files, do some anti-bloat
work, or add missing dependencies locally. The documentation for this does not yet exist though, but
Nuitka contains a Yaml schema in the ni sc/ nui t ka- package- confi g- schena. j son file.

» Added nui t ka- pr oj ect - el se to avoid repeating conditions in Nuitka project configuration, this
can e.g. be used like this:

nui tka-project-if: os.getenv("TEST VAR ANT", "pyside2") == "pyside2":
nui t ka- proj ect: --enabl e-pl ugi n=no-qt

nui t ka- proj ect - el se:

nui t ka- proj ect: --enabl e-pl ugi n=no-qt

nui t ka- proj ect: --noincl ude-data-fil e=*.svg

Previously, the inverted condition had to be used in another nui t ka- pr oj ect -i f which is no big
deal, but less readable.

» Added support for deep copying uncompiled functions. There is now a section in the User Manual
that explains how to clone compiled functions. This allows a workaround like this:

def binder(func, nane):
try:
result = func.clone()
except AttributeError:
result = types. FunctionType(func.__code__, func.__globals__, name=func. __nane__, argdefs=func.__defaults__, closure=func.__closure_)
result = functool s. update_w apper(result, func)
result.__kwdefaults__ = func. __kwdefaults__

result.__nane__ = nane
return result

* Plugins: Added explicit deprecation status of a plugin. We now have a few that do nothing, and are
just there for compatibility with existing users, and this now informs the user properly rather than just
saying it is not relevant.

» Fix, some Python installations crash when attempting to import modules, such as os with a
Modul eNane object, because we limit string operations done, and e.g. refuse to do . startswi th
which of course, other loaders that your installation has added, might still use.

» Windows: In case of not found DLLs, we can still examine the run time of the currently compiling
Python process of Nuitka, and locate them that way, which helps for some Python configurations to
support standalone, esp. to find CPython DLL in unusual spots.

» Debian: Workaround for | i b2t 03 data files. These are from stdlib and therefore the patched code
from Debian needs to be undone, to make these portable again.

Optimization

* Scalability: Avoid merge traces of initial variable versions, which came into play when merging a
variable used in only one branch. These are useless and only made other optimization slower or
impossible.

» Scalability: Also avoid merge traces of merge traces, instead flatten merge traces and avoid the
duplication doing so. There were pathological cases, where this reduced optimization time for
functions from infinite to instant.

» For comparison helpers, switch comparison where possible, such that there are only 3 variants,
rather than 6. Instead the boolean result is inverted, e.g. changing >= into not < effectively. Of
course this can only be done for types, where we know that nothing special, i.e. no method overloads
of _gte_ isgoingon.

* For binary operations that are commutative with the selected types, in mixed type cases, swap the
arguments during code generation, such that e.g. l ong_a + fl oat_b is actually computed as

float _b + | ong_a. This again avoids many helpers. It also can be done for * with integers and
container types.

* In cases, where a comparison (or one of the few binary operation where we consider it useful), is
used in a boolean context, but we know it is impossible to raise an exception, a C boolean result type
is used rather than a nui t ka_bool which is now only used when necessary, because it can indicate
the exception result.

» Anti-Bloat: More anti-bloat work was done for popular packages, covering also uses of
set upt ool s_scm nose and nose2 package removals and warnings. There was also a focus on
making mmvc, tensorflowand tifffile compile well, removing e.g. the uses of the tensorflow
testing framework.

 Faster comparison of i nt values with constant values, this uses helpers that work with C | ong
values that represent a single "digit" of a value, or ones that use the full value space of C | ong.

» Faster comparison of f | oat values with constant values, this uses helpers that work with C f | oat
values, avoiding the useless Python level constant objects.

» Python2: Comparison of i nt and | ong now has specialized helpers that avoids converting the i nt
to a | ong through coercion. This takes advantage of code to compare C | ong values (which are at
the core of Python2 i nt objects, with | ong objects.

» For binary operation on mixed types, e.g. int * bytes the slot of the first function was still
considered, and called to give a Py_Not | npl enent ed return value for no good reason. This also
applies to mixed operations of i nt, | ong, and f| oat types, and for str and uni code values on
Python2.

» Added missing helper for ** operation with floats, this had been overlooked so far.

» Added dedicated nodes for ct ypes. CDLL which aims to allow us to detect used DLLs at compile
time in the future, and to move closer to support its bindings more efficiently.

» Added specialized nodes for di ct . popi t emas well. With this, now all of the dictionary methods are
specialized.

» Added specialized nodes for str.expandtabs, str.translate, str.|just, str.rjust,
str.center, str.zfill, and str.splitlines. While these are barely performance relevant,
this completes all st r methods, except r enovepr ef i x and r enovesuf fi x that are Python3.9 or
higher.

» Added type shape for result of st r. i ndex operation as well, this was missing so far.
» Optimize st r, byt es and di ct method calls through variables.

» Optimize calls through variables containing e.g. mutable constant values, these will be rare, because
they all become exceptions.

» Optimize calls through variables containing built-in values, unlocking optimization of such calls, where
it is assigned to a local variable.

* For generated attribute nodes, avoid local doing import statements on the function level. While these
were easier to generate, they can only be slow at run time.

* For the st r built-in annotate its value as derived from st r, which unfortunately does not allow much
optimization, since that can still change many things, but it was still a missing attribute.

* For variable value release nodes, specialize them by value type as well, enhancing the scalability,
because e.g. parameter variable specific tests, need not be considered for all other variable types as
well.

Organisational

* Plugins: Major changes to the Yaml file content, cleaning up some of the DLL configuration to more
easy to use.

The DLL configuration has two flavors, one from code and one from filename matching, and these got
separated into distinct items in the Yaml configuration. Also how source and dest paths get provided
got simplified, with a relative path now being used consistently and with sane defaults, deriving the
destination path from where the module lives. Also what we called patterns, are actually prefixes, as
there is still the platform specific DLL file naming appended.

* Plugins: Move mode checks to dedicated plugin called opti ons-nanny that is always enabled,
giving also much cleaner Yaml configuration with a new section added specifically for these. It
controls advice on the optional or required use of --di sabl e-consol e and the like. Some
packages, e.g. wx are known to crash on macOS when the console is enabled, so this advice is how
done with saner configuration.

* Plugins: Also for all Yaml configuration sub-items where is now a consistent when field, that allows
checking Python version, OS, Nuitka modes such as standalone, and only apply configuration when
matching this criterion, with that the anti-bloat options to allow certain bloat, should now have proper
effect as well.

» The use of Appl nage on Linux is no more. The performance for startup was always slower, while
having lost the main benefit of avoiding 10 at startup, due to new cached mode, so now we always
use the same bootstrap binary as on macOS and Windows.

« Ul: Do not display implicit reports reported by plugins by default anymore. These have become far too
many, esp. with the recent stdlib work, and often do not add any value. The compilation report will
become where to turn to find out why a module in included.

» Ul: Ask the user to install the ordered set package that will actually work for the specific Python
version, rather than making him try one of two, where sometimes only one can work, esp. with Python
3.10 allowing only one.

 GitHub: More clear wording in the issue template that pyt hon -m nui tka --version output is
really required for support to given.

« Attempt to use Anaconda ccache binary if installed on non-Windows. This is esp. handy on macOS,
where it is harder to get it.

» Windows: Avoid byte-compiling the inline copy of Scons that uses Python3 when installing for
Python2.

» Added experimental switches to disable certain optimization in order to try out their impact, e.g. on
corruption bugs.

» Reports: Added included DLLs for standalone mode to compilation report.
» Reports: Added control tags influencing plugin decisions to the compilation report.

* Plugins: Make the i nplicit-inports dependency section in the Yaml package configuration a
list, for consistency with other blocks.

* Plugins: Added checking of tags such from the package configuration, so that for things dependent
on python version (e.g. pyt hon39 _or hi gher, before_ python39), the usage of Anaconda
(anaconda) or certain OS (e.g. nacos), or modes (e.g. st andal one), expressions in when can limit
a configuration item.

 Quality: Re-enabled string normalization from black, the issues with changes that are breaking to
Python2 have been worked around.

» User Manual: Describe using a minimal virtualenv as a possible help low memory situations as well.
* Quality: The yaml auto-format now properly preserves comments, being based on r uanel . yam .

* Nuitka-Python: Added support for the Linux build with Nuitka-Python for our own CPython fork as
well, previously only Windows was working, amd macOS will follow later.

» The commit hook when installed from git bash was working, but doing so from cnd. exe didn't find a
proper path for shell from the gi t location.

» Debugging: A lot of experimental toggles were added, that allow control over the use of certain
optimization, e.g. use of dict, list, iterators, subscripts, etc. internals, to aid in debugging in situations
where it's not clear, if these are causing the issue or not.

» Added support for Fedora 36, which requires some specific linker options, also recognize Fedora
based distributions as such.

» Removed long deprecated option - - noi ncl ude- mat pl ot | i b from numpy plugin, as it hasn't had
an effect for a long time now.

« Visual Code: Added extension for editing Jinja2 templates. This one even detects that we are editing
C or Python and properly highlights accordingly.

Cleanups

« Standalone: Major cleanup of the dependency analysis for standalone. There is no longer a
distinction between entry points (main binary, extension modules) and DLLs that they depend on.
The OS specific parts got broken out into dedicated modules as well and decisions are now taken
immediately.

* Plugins: Split the Yaml package configuration files into 3 files. One contains now Python2 only stdlib
configuration, and another one general stdlib.

* Plugins: Also cleanup the zng plugin, which was one the last holdouts of now removed plugin
method, moving parts to the Yaml configuration. We therefore no longer have consi der ExtraDi | s
which used to work on the standalone folder, but instead only plugin code that provides included DLL
or binary objects from get Ext raDl | s which gives Nuitka much needed control over DLL copying.
This was a long lasting battle finally won, and will allow many new features to come.

» Ul: Avoid changing whitespace in warnings, where we have intended line breaks, e.g. in case of
duplicate DLLs. Went over all warnings and made sure to either avoid new-lines or have them,
depending on wanted output.

« Iterator end check code now uses the same code as rich comparison expressions and can benefit
from optimization being done there as well.

» Solved TODO item about code generation time C types to specify if they have error checking or not,
rather than hard coding it.

 Production of binary helper function set was cleaned up massively, but still needs more work,
comparison helper function set was also redesigned.

» Changing the spelling of our container package to become more clear.
» Used nanedt upl e objects for storing used DLL information for more clear code.
» Added spelichecker ignores for all attribute and argument names of generated fixed attribute nodes.

« In auto-format make sure the imports float to the top. That very much cleans up generated attribute
nodes code, allowing also to combine the many ones it makes, but also cleans up some of our
existing code.

» The package configuration Yaml files are now sorted according to module names. This will help to
avoid merge conflicts during hotfixes merge back to develop and automatically group related entries
in a sane way.

» Moved large amounts of code producing implicit imports to Yaml configuration files.

» Changed the t ensor f | ow plugin to Yaml based configuration, making it a deprecated do nothing
plugin, that only remains there for a few releases, to not crash existing build scripts.

 Lots of spelling cleanups, e.g. renaming nui t ka. codegen to nuit ka. code_generati on for
clarity.

Tests

» Added generated test to cover byt es method. This would have found the issue with decode
potentially.

» Enhanced standalone test for ct ypes on Linux to actually have something to test.

Summary

This release improves on many things at once. A lot of work has been put into polishing the Yaml
configuration that now only lacks documentation and examples, such that the community as a whole
should become capable of adding missing dependencies, data files, DLLs, and even anti-bloat patches.

Then a lot of new optimization has been done, to close the missing gaps with di ct and st r methods, but
before completing | i st which is already a work in progress pull request, and byt es, we want to start and
generate the node classes that form the link or basis of dedicated nodes. This will be an area to work on
more.

The many improvements to existing code helpers, and them being able to pick target types for the
arguments of comparisons and binary operations, is a pre-cursor to universal optimization of this kind.
What is currently only done for constant values, will in the future be interesting for picking specific C types
for use. That will then be a huge difference from what we are doing now, where most things still have to
use Py(Obj ect * based types.

Scalability has again seen very real improvements, memory usage of Nuitka itself, as well as compile time
inside Nuitka are down by a lot for some cases, very noticeable. There is never enough of this, but it
appears, in many cases now, large compilations run much faster.

For macOS specifically, the new DLL dependency analysis, is much more capable or resolving conflicts all
by itself. Many of the more complex packages with some variants of Python, specifically Anaconda will
now be working a lot better.

And then, of course there is the big improvement for Onefile, that allows to use cached paths. This will
make it more usable in the general case, e.g. where the firewall of Windows hate binaries that change their
path each time they run.

Future directions will aim to make the compilation report more concise, and given reasons and
dependencies as they are known on the inside more clearly, such that is can be a major tool for testing,
bug reporting and analysis of the compilation result.

Nuitka Release 0.9

This release has a many optimization improvements, and scalability improvements, while also adding new
features, with also some important bug fixes.

Bug Fixes

* Fix, hard module name lookups leaked a reference to that object. Fixed in 0.8.1 already.
* Python2: Fix, st r. decode with er r or s as the only argument wasn't working. Fixed in 0.8.1 already.

* Fix, could corrupt created uncompiled class objects __i ni t __ functions in case of descriptors being
used.

» Standalone: Added support for newer t or ch. Fixed in 0.8.1 already.

« Standalone: Added support for newer t or chvi si on. Fixed in 0.8.1 already.

* Fix, could compile time crash during initial parsing phase on constant dictionary literals with
non-hashable keys.

{ {}:1, 1}

* Fix, hard imported sub-modules of hard imports were falsely resolved to their parent. Fixed in 0.8.3
already.

importlib.resources.read bytes() # gave inportlib has no attribute...
» Windows: Fix, outputs with - - f or ce- st dout - spec or - - f or ce- st derr - spec were created with
the file system encoding on Python3, but they nee to be ut f - 8.
* Fix, didn't allow zero spaces in Nuitka project options, which is not expected.

* Modules: Fix, the del __file__ in the top level module in module mode caused crashes at run
time, when trying to restore the original __fi | e__ value, after the loading CPython corrupted it.

» Python2.6: Fixes for installations without pkg_r esour ces.

» Windows: Fix for very old Python 2.6 versions, these didn't have a language assigned that could be
used.

* Security: Fix for CVE-2022-2054 where environment variables used for transfer of information
between Nuitka restarting itself, could be used to execute arbitrary code at compile time.

* Anaconda: Fix, the torch plugin was not working on Linux due to missing DLL dependencies.

* Fix, static optimization of i nportlib.inport_nodul e with a package given, for an absolute
import was optimized into the wrong import, package was not ignored as it should be.

» Windows: Installed Python scan could crash on trying installation paths from registry that were
manually removed in the mean time, but not through an uninstaller.

« Standalone: Added missing implicit dependency for pyr eadst at because parts of standard library it
uses are no more automatically included.

» Windows: Could still crash when no power shel | is available with symlinks, handle this more

gracefully.

» Standalone: Added more missing Plotly dependencies, but more work will be needed to complete
this.

« Standalone: Add missing stdlib dependency on mul ti processi ng by

concurrent. futures. process.

« Standalone: Fix, implicit dependencies assigned to i magei o on PIL plugins should actually be
assigned to PI L. | mage that actually loads them, so it works outside of i magei o too.

New Features

* Ul: Added new option - - user - package-configuration-file to allow users to provide extra
Yaml configuration files for the Nuitka plugin mechanism to add hidden dependencies, anti-bloat, or
data files, for packages. This will be useful for developing PRs to the standard file of Nuitka. Currently
the schema is available, but it is not documented very well yet, so not really ready for end users just
yet.

* Standalone: Added new no- gt plugin as an easy way to prevent all of the Qt bindings from being
included in a compilation.

* Include module search path in compilation report.

Optimization

https://security-tracker.debian.org/tracker/CVE-2022-2054

* Faster dictionary iteration with our own replacement for PyDi ct _Next that avoids the DLL call
overhead (in case of non-static libpython) and does less unnecessary checks.

» Added optimization for str. count and str.format methods as well, this should help in some
cases with compile time optimization.

» The node for di ct . updat e with only an iterable argument, but no keyword arguments, was in fact
unused due to wrongly generated code. Also the form with no arguments wasn't yet handled properly.

» Scalability: Use specialized nodes for pair values, i.e. the representation of x = y in e.g. dictionary
creations. With constant keys, and values, these avoid full constant value nodes, and therefore save
memory and compile time for a lot of code.

» Anti-Bloat: Added more scalability work to avoid including modules that make compilation
unnecessarily big.

» Python3.9+: Faster calls in case of mixed code, i.e. compiled code calling uncompiled code.

*« Removing duplicates and non-existent entries from modules search path should improve
performance when locating modules.

» Optimize calls through variables as well. These are needed for the package resource nodes to
properly resolve at compile time from their hard imports to the called function.

» Hard imported names should also be considered very trusted themselves, so they are e.g. also
optimized in calls.

 Anti-Bloat: Avoid more useless imports in Pandas, Numba, Plotly, and other packages, improving the
scalability some more.

» Added dedicated nodes for pkg_resources. require, pkg resources. get_distribution,
i mportlib. netadata.version,andinportlib_metadata.version, sowe can use compile
time optimization to resolve their argument values where possible.

 Avoid annotating control flow escape for all release statements. Sometimes we can tell that __del
will not execute outside code ever, so this then avoids marking values as escaped, and taking the
time to do so.

» Calls of methods through variables on st r, di ct, byt es that have dedicated nodes are now also
optimized through variables.

» Boolean tests through variables now also are optimized when the original assignment is a compile
time constant that is not mutable. This is only basic, but will allow tests on TYPE_CHECKI NG coming
from a from typing inport TYPE CHECKI NG statement to be optimized, avoiding this
overhead.

Cleanups

» Changed to t or ch plugin to Yaml based configuration, making it obsolete, it only remains there for a
few releases, to not crash existing build scripts.

» Moved older package specific hacks to the Yaml file. Some of these were from hotfixes where the
Yaml file wasn't yet used by default, but now there is no need for them anymore.

» Removed most of the pkg- r esour ces plugin work. This is now done during optimization phase and
rather than being based on source code matches, it uses actual value tracing, so it immediately
covers many more cases.

» Continued spelling improvements, renaming identifiers used in the source that the cspell based
extension doesn't like. This aims at producing more readable and searchable code.

» Generated attribute nodes no longer do local imports of the operation nodes they refer to. This also
avoids compile time penalties during optimization that are not necessary.

» Windows: Avoid useless bytecode of inline copy used by Python3 when installing for Python2, this
spams just a lot of errors.

Organisational

» Removed MSI installers from the download page. The MSI installers are discontinued as Python has
deprecated their support for them, as well as Windows 10 is making it harder for users to install them.
Using the PyPI installation is recommended on Windows.

» Merged our Yaml files into one and added schema description, for completion and checking in Visual
Code while editing. Also check the schema in check- nuitka-w th-yam | i nt which is now
slightly misnamed. The schema is in no way final and will see improvements in future releases.

« Ul: Nicer progress bar layout that avoids flicker when optimizing modules.

« Ul: When linking, output the total humber of object files used, to have that knowledge after the
progress bar for C compilation is gone.

* Quality: Auto-format the package configuration Yaml file for anti-bloat, implicit dependencies, etc.
* GitHub: Point out the commit hook in the PR template.
« Ul: Nicer output in case of no commercial version is used.

» Updated the MinGW64 winlibs download used on Windows to the latest version based on gcc 11, the
gcc 12 is not yet ready.

» Git: Make sure we are not affected by core. aut ocrl f setting, as it interferes with auto-format
enforcing Unix newlines.

* Removed the MSI downloads. Windows 10 has made them harder to install and Python itself is
discontinuing support for them, while often it was only used by beginners, for which it was not
intended.

» Anaconda: Make it more clear how to install static libpython with precise command.
 Ul: Warn about using Debian package contents. These can be non-portable to other OSes.

 Quality: The auto-format now floats imports to the top for consistency. With few exceptions, it was
already done like this. But it makes things easier for generated code.

Tests

» The reflected test was adapted to preserve PYTHONPATH now that module presence influences
optimization.

Summary

This release marks a point, that will allow us to open up the compatibility work for implicit dependencies
and anti-bloat stuff even further. The Yaml format will need documentation and potentially more
refinement, but will open up a future, where latest packages can be supported with just updating this
configuration.

The scalability improvements really make a difference for many libraries and are a welcome improvement
on both memory usage and compile time. They are achieved by an accord of static optimization of

One optimization aimed at optimizing tuple unpacking, was not finished in time for this release, but will be
subject of a future release. It has driven many other improvements though.

Generally, also from the Ul, this is a huge step forward. With links to the website for complex topics being
started, and the progress bar flicker being removed, the tool has yet again become more user friendly.

Nuitka Release 0.8

This release has a massive amount of bug fixes, builds on existing features, and adds new ones.
Bug Fixes

» Windows: Fix, need to ignore cases where shorting in path for external use during compilation gives
an permission error. Fixed in 0.7.1 already.

» Compatibility: Added workaround for sci py. st at s function copying. Fixed in 0.7.1 already.

» Windows: Fix, detect ARM64 arch of MSVC properly, such that we can give a proper mismatch for
the Python architecture. Fixed in 0.7.1 already.

» Standalone: Fix, using i nport1i b. net adat a module failed to include emai | from standard library
parts no longer included by default. Fixed in 0.7.1 already.

» macOS: Fix, the dependency parser was using normalized paths where original paths must be used.
Fixed in 0.7.1 already.

« Standalone: Fix, using shi boken6 module (mostly due to PySi de6) failed to include ar gpar se
from the standard library from standard library parts no longer included by default. Fixed in 0.7.1
already.

* Onefile: Fix, the detection of a usable Python for compression could crash. Fixed in 0.7.2 already.

* Onefile: Adding the payload on Windows could run into locks still being held, need to wait in that
case. Fixed in 0.7.2 already.

* Fix, need to include pkg_r esour ces as well, we need it for when we use Jinja2, which is more often
now. For Python3 this was fixed in 0.7.3 already. Later a version to use with Python2 was added as
well.

» Release: The wheels built for Nuitka when installed through URLs were not version specific, but due
to different inline copies per OS and Python version, they must not be reused. Therefore we now
pretend to contain an extension module, which handles that. Fixed in 0.7.3 already.

« Standalone: Fix, using urllib. requests module failed to include http. client from standard
library parts no longer included by default. Fixed in 0.7.3 already. Later http. cooki ej ar was
added too.

« Standalone: Do not compress MSVC run time library when using upx plugin, that is not going to
work. Fixed in 0.7.4 already.

» Standalone: Fix, on Windows more files should be included for Tkinter to work with all software. Fixed
in 0.7.5 already.

» Distutils: Added support for package_di r directive to specify where source code lives. Fixed in
0.7.6 already.

« Standalone: Fix, using shel ve module failed to include dbmfrom standard library parts no longer
included by default. Fixed in 0.7.6 already.

« Standalone: Added support for ar cade data files. Fixed in 0.7.7 already.

« Standalone: Fix, bytecode demotions should use relative filenames rather than original ones. Fixed in
0.7.7 already.

« Standalone: Fix, must remove extension module objects from sys. nodul es before executing an
extension module that will create it. This fixes cases of cyclic dependencies from modules loaded by
the extension module.

* Windows: In case of an exception, cl cache was itself triggering one during its handling, hiding the
real exception behind a TypeEr r or .

» Windows: Improved cl cache locking behavior, avoiding a race. Also increase characters used for
key from 2 to 3 chars, making collisions far more rare.

» Standalone: Added support for per si st ent package.
« Standalone: Added support for newer t ensor f | ow package.

» Module: Fix, need to restorethe _ file__ and __spec__ values of top level module. It is changed
by CPython after import to an incompatible file nhame, and not our loader, preventing package
resources to be found.

» Standalone: Added support for Cr pyt odone. C pher. PKCS1 v1 5.

* Fix, pkgutil.iter_nodul es without arguments was not working properly with our meta path
based loader.

» Windows: Fix, could crash on when the Scons report was written due to directories in PATH that failed
to encode.

» Compatibility: Fix, positive di vhod and modulo %with negative remainders of positive floats was not
correct.

* Fix, str.encode with only errors value, but default value for encoding was crashing the
compilation.

» Python3.10+: Fix, mat ch statement sliced values must be lists, not tuples.
» Standalone: Added support for newer gl f wand OpenG. packages.

» Python3: Fix, failed to read bytecode only stdlib files. This affect mostly Fedora Python which does
this for encodings.

» Python3.5+: Fix, two phase loading of modules could release it immediately.

« Standalone: Added missing dependency for pydanti c.

 Fix, the str. split rejected default sep value with only naxspl i t given as a keyword argument.
« Standalone: Added missing dependency of wsgi r ef module.

» Standalone: Added support for f al con module.

» Standalone: Added support for el i ot module.

* Fix, need to mark assigned from variables as escaped. Without it, some aliased loop variables could
be misunderstood and falsely statically optimized.

« Standalone: Added support for newer uvi cor n package.

 Standalone: Added data files for the accessi bl e output2, babel, frozendict, and
sound_| i b package.

« Standalone: Added support for newer skl ear n package.
« Standalone: Added support for t ki nt er dnd2 package.

» Python3.7+: Fix, the error message wasn't fully compatible for unsubscriptable type exception
messages.

« Standalone: Fix, i dl el i b from stdlib was always ignored.

» Python3.4+: Fix, the __spec__.origin as produced by fi nd_spec of our meta path based
loader, didn't have the correct or i gi n attribute value.

« Standalone: Disable QtPDF plugin of PySide 6.3.0, because it's failing dependency checks. On
macOS this was blocking, we will change it to detection if that is necessary in a future release.

» Standalone: Added support for or der edmnul ti di ct .

« Standalone: Added support for cl r module.

» Standalone: Added support for newer cv2 package.

New Features

» Added new option - - nodul e- name- choi ce to select what value __nanme__ and __package_
are going to be. With --nodul e- nanme- choi ce=runti nme (default for - - nodul e mode), the
created module uses the parent package to deduce the value of __ package_ , to be fully
compatible. The value - - nodul e- nane- choi ce=ori gi nal (default for other modes) allows for
more static optimization to happen.

» Added support for get _resource_reader to our meta path based loader. This allows to avoid
useless temporary files in case i nportlib.resources. path is used, due to a bad interaction
with the fallback implementation used without it.

» Added support for - - force-stdout-spec”” "and " --force-stderr-spec on all platforms,
this was previously limited to Windows.

» Added support for requiring and suggesting modes. In part this was added to 0.7.3 already, and is
used e.g. to enforce that on macOS the wx will only work as a GUI program and crash unless
--di sabl e-consol e is specified. These will warn the user or outright error the compilation if
something is known to be needed or useful.

 Debian: Detect version information for "Debian Sid". Added in 0.7.4 already, and also improved how
Debian/Ubuntu versions are output.

» Added new option - - noi ncl ude- dat a-fi | es to instruct Nuitka to not include data files matching
patterns given. Also attached loggers and tags to included data file and include them in the
compilation report.

« Distutils: When using pypr oj ect.tom without setup. py so far it was not possible to pass
arguments. This is now possible by adding a section like this.

[nui t ka]
options without an argunent are passed as bool ean val ue
showscons = true

options with single values, e.g. enable a plugin of Nuitka
enabl e-plugi n = pysi de2

options with several values, e.g. avoiding including nodul es, accepts
list argunent.
nofol l owinmport-to = ["*.tests", "*.distutils"]

The option names are the same, but without leading dashes. Lists are only needed when passing
multiple values with the same option.

» macOS: Add support for specifying signing identity with - - nacos- si gn-i dentity and access to
protected resources - - macos- app- pr ot ect ed-r esour ce.

* Included data files are now reported in the compilation report XML as well.

* Accept absolute paths for searching paths of binaries. This allows e.g. the upx plugin to accept both
a folder path and the full path including the binary name to work when you specify the binary location
with - - upx- bi nar y making it more user friendly.

» Python3.10: Added support for positional matching of classes, so far only keyword matching was
working.

* Added support for path spec values CACHE DI R, “COVPANY% %°RODUCT% %/ERSI ON% and
%HOVE in preparation of onefile once again being able to be cached and not unpacked repeatedly for
each execution.

« Standalone: Detect missing t k- i nt er plugin at run time. When TCL fails to load, it then outputs a
more helpful error. This ought to be done for all plugins, where it's not clear if they are needed.

» Anti-Bloat: Added support for plain replacements in the anti-bl oat.ym file. Before with
repl acenent °, the new value had to be produced by an eval , which makes for less readable
values due to extra quoting. for plain values.

Optimization

» Python3.10+: Added support for or der ed- set PyPl package to speed up compilation on these
versions too, adding a warning if no accelerated form of Or der edSet is used, but believed to be
usable.

» Optimization: Added byt es. decode operations. This is only a start and we needed this for internal
usage, more should follow later.

* Much more anti - bl oat work was added. Avoiding i pyt hon, uni ttest, and sometimes even
doct est usage for some more packages.

» The ccache was not always used, sometimes it believed to catch a potential race, that we need to
tell it to ignore. This will speed up re-compilation of the C side in many cases.

» Do not compile the meta path based loader separate, which allows us to not expose functions and
values only used by it. Also spares the C compiler one file.

» Added various dedicated nodes for querying package resources data, e.g. pkgutil . get dat a.
This will make it easier to detect cases of missing data files in the future.

» Added more hard imports, some of which help scalability in the compilation, because these are then
known to exist in standalone mode, others are used for package resource specific operations.

 Onefile: Releasing decompression buffers avoiding unnecessary high memory usage of bootstrap
binary.

« Standalone: Avoid proving directories with no DLLs (e.g. from packages) towards | dd, this should
avoid exceeding command line limits.

» For cl cache remove writing of the stats file before Scons has completed, which avoids IO and
locking churn.

« Standalone: Avoid including wsgi r ef from stdlib by default.

Cleanups

* Removed references to chr pat h and dead code around it, it was still listed as a dependency,
although we stopped using it a while ago.

» Removed uses of ant i - bl oat in examples and tests, it is now enabled by default.
» Made standard plugin file naming consistent, their name should be * Pl ugi n. py.

 Cleaned up t ensor f | ow plugin. The source modification was moved to anti - bl oat where it is
easy to do. The implicit dependencies are now in the config file of i npl i ci t-i nmport s plugin.

» Massive cleanups of data file handling in plugins. Adding methods for producing the now required
objects.

» The Scons file handling got further cleaned up and unified, doing more things in common code.

» Avoid #i f def s usages with new helper function Nui t ka_St ri ng_Fr onfor nat that implies them
for more readable code.

« Split the allowance check from the encountering. Allow plugins and options all to say if an import
should be followed, and only when that is decided, to complain about it. Previously the attempt was
causing an error, even if another plugin were to decide against it later.

» Python2.6: Avoid warnings from MSVC for out specialized | ong code. In testing it worked correctly,
but this is more explicit and doesn't rely on C implementation specific behavior, although it appears to
be universal.

Organisational

» Ul: Warning tests are now wrapped to multiple lines if necessary. That makes it more accessible for
larger messages that contain more guiding information.

» Documented how to use local Nuitka checkout with pypr oj ect. t oml files, this makes debugging
Nuitka straightforward in these setups.

» Added instructions on how to pass extra C and linker flags and to the User Manual.
» Made our auto-format usable for the Nuitka website code too.

* Removed dependencies on chr pat h and the now dead code that would use it, we are happy with
pat chel f.

» Updated to latest versions of requirements for development, esp. bl ack and pyl i nt .

* Renamed - - nacos-onefil e-i con to - - nacos- app-i con because that is what it is really used
for.

« Unified how dependencies are installed in GitHub actions.
» Updated man page contents for option name changes from last releases.
» Updated the MinGW64 winlibs download used on Windows to the latest version.

» Updated the ccache binary used on Windows with MinGW64. This is in preparation of using it
potentially for MSVC as well.

» Updated Visual Code C config to use Python3.10 and MSVC 2022 include paths.

Tests

« Better outputs from standalone library compilation test, esp. when finding a problem, present the
script to reproduce it immediately.

» Enhanced generated tests to cover st r methods to use keyword arguments.
» Added automatic execution of pypr oj ect .t om driven test case.

» Enhanced output in case of opti m zati on test failures, dumping what value is there that has not
become a compile time constant.

Summary

This release has seen a lot of consolidation. The plugins layer for data files is now all powerful, allowing
much nicer handling of them by the plugins, they are better reported in normal output, and they are also
part of the report file that Nuitka can create. You may now also inhibit their inclusion from the command
line, if you decide otherwise.

The pypr oj ect. t om now supporting Nuitka arguments is closing an important gap.

Generally many features got more polished, e.g. non-automatic inclusion of stdlib modules has most
problems fixed up.

An important area of improvement, are the hard imports. These will be used to replace the source based
resolution of package requirements with ones that are proper nodes in the tree. Getting these hard imports
to still retain full compatibility with existing imports, that are more or less __i nport __ uses only, was
revealing quite a bit of technical debt, that has been addressed with this release.

For onefile, the cached mode is being prepared with the variables added, but will only be in a later release.

Also a bunch of new or upgraded packages are working now, and the push for anti - bl oat work has
increased, making many compilations even more lean, but scalability is still an issue.

Nuitka Release 0.7

This release is massively improving macOS support, esp. for M1 and the latest OS releases, but it also
has massive improvements for usability and bug fixes in all areas.

Bug Fixes

* Fix, set creation wasn't annotating its possible exception exit from hashing values and is not as free
of side effects as | i st and t upl e creations are. Fixed in 0.6.19.1 already.

* Windows: Fix, - - experi ment al option values got lost for the C compilation when switching from
MSVC to MinGW64, making them have no effect. Fixed in 0.6.19.1 already.

* Windows: Fix, Clang from MinGW64 doesn't support LTO at this time, therefore default to no for it.
Fixed in 0.6.19.1 already.

» Debian: Fix, failed to detect Debian unstable as suitable for linking, it doesn't have the release
number. Fixed in 0.6.19.1 already.

» Standalone: Added data files for pygsheet s package. Fixed in 0.6.19.2 already.

* Fix, paths from plugin related file paths need to be made absolute before used internally, otherwise
the cache can fail to deduplicate them. Fixed in 0.6.19.2 already.

» Python3: With gcc before version 5, e.g. on CentOS 7, where we switch to using g++ instead, the gcc
version checks could crash. Fixed in 0.6.19.2 already.

* Windows: Disable MinGW64 wildcard expansion for command line arguments. This was breaking
command lines with arguments like - -fil enane *.txt, which under cnd. exe are left alone by
the shell, and are to be expanded by the program. Fixed in 0.6.19.2 already.

« Standalone: Added missing implicit dependency needed for - -fol | ow stdl i b with Python for
some uses of the | ocal e module. Fixed in 0.6.19.2 already.

» Standalone: Added workarounds for newest nunpy that wants to set __code__ objects and required
improvements for macOS library handling. Fixed in 0.6.19.3 already.

» Windows: Caching of DLL dependencies for the main programs was not really working, requiring to
detect them anew for every standalone compilation for no good reason. Fixed in 0.6.19.3 already.

» Windows: Fix, CTRL-C from a terminal was not propagated to child processes on Windows. Fixed in
0.6.19.4 already.

« Standalone: With certi fi and Python3.10 the i nportl i b. r esour ce could trigger Virus scanner
inflicted file access errors. Fixed in 0.6.19.4 already.

» Python3.10: Reverted error back iteration past end of generator change for Python 3.10.2 or higher to
become compatible with that too. Fixed in 0.6.19.5 already.

« Standalone: Added support for anyi o and by proxy for Solana. Fixed in 0.6.19.5 already.

* Fix, compilation with resource mode i ncbi n and - - debugger was not working together. Fixed in
0.6.19.5 already.

* Fix, format optimization of known st r objects was not properly annotating an exception exit when
being optimized away, causing consistency checks to complain. Fixed in 0.6.19.5 already.

» Windows: Fix, cl cache didn't work for non-standard encoding source paths due to using th direct
mode, where wrong filenames are output by MSVC. Fixed in 0.6.19.5 already.

» Windows: Fix, ccache cannot handle source code paths for non-standard encoding source paths.
Fixed in 0.6.19.5 already.

» Python2.6: Fix, callsto iteritens and i t er keys on known dictionary values could give wrong
values. Fixed in 0.6.19.5 already.

* Fix, the value of __nodul e__ if set by the metaclass was overwritten when creating types. Fixed in
0.6.19.6 already.

* Plugins: Add support for the latest version of pkg_ resources that has "vendored" even more
packages. Fixed in 0.6.19.6 already.

« Onefile: The onefile binary was locked during run time and could not be renamed, preventing in-place
updates. This has been resolved and now on Windows, the standard trick for updating a running
binary of renaming it, then placing the new file works.

* Fix, wasn't checking the zst andar d version and as a result could crash if too old versions of it. This
is now checked.

» macOS: Large amounts of bug fixes for the dependency scanner. It got cleaned up and now handles
many more cases correctly.

» Windows: Fix, was not properly detecting wrong ClangCL architecture mismatch with the Python
architecture. This could result in strange errors during C compilation in this setup.

« Standalone: Added implicit dependencies for the asyncpg module.

« Linux: Detect Debian or Ubuntu base and distribution name more reliably. This helps esp. with static
libpython optimization being recognized automatically.

New Features

» We now disallow options that take arguments to be provided without using =.

* Previously --1to no worked just as well as - -1t o=no did. And that was the cause of problems
when - - | t o first became a choice.

Recently similar, but worse problems were observed, where e.g. - - i ncl ude- nodul e could swallow
trailing other arguments when users forgot to specify the name by accident. Therefore this style of
giving options is now explicitly rejected.

» Compiled types of Nuitka now inherit from uncompiled types. This should allow easier and more
complete compatibility, making even code in extension modules that uses PyQhj ect _| sl nst ance
work, e.g. pydanti c.

» macOS: Added signing of application bundles and standalone binaries for deployment to newer
macOS platforms and esp. M1 where these are mandatory for execution.

» macOS: Added support for selecting the single macOS target arch to create a binary for. The
uni ver sal architecture is not yet supported though, but will be added in a future release.

» Added support for compression in onefile mode through the use of an other Python installation, that
has the zst andar d module installed. With this it will work with 2.6 or higher, but require a 3.5 or
higher Python with it installed in either PATH or on Windows in the registry alternatively.

» Added UPX plugin to compress created extension modules and binaries and for standalone mode,
the included DLLs. For onefile, the compression is not useful since it has the payload already
compressed.

» Added a more explicit way to list usable MSVC versions with - - msvc=l i st rather than requiring an
invalid value. Check values given in the same way that Scons will do.

» Added support for - - pyt hon-f| ag=- u which disabled outputs buffers, so that these outputs are
written immediately.

* Plugins: Always on plugins now can have command line options. We want this for the ant i - bl oat
plugin that is enabled by default in this release.

* Plugins: Added ability for plugin to provide fake dependencies for a module. We want the this for the
nmul ti processi ng plugin, that is now enabled by default in this release too.

* Plugins: Added ability for plugins to modify DLLs after copy for standalone. We will be using this in
the new upx plugin.

» Added retry for file copies that fail due to still running program. This can happen on Windows with
DLLs in standalone mode. For interactive compilation, this allows a retry to happen after prompting
the user.

» Ul: Added ability to list MSVC versions with --nsvc=li st, and detect illegal values given to
- - mevc= before Scons sees them, it also crashes with a relative unhelpful error message.

» Ul: When linking, close the C compilation progress bar and state that that linking is going on. For
some very large LTO compilations, it was otherwise at 100% and still taking a long time, confusing
users.

* Plugins: Added new plugin that is designed to handle DLL dependencies through a configuration file
that can both handle filename patterns as well as code provided DLL locations.

» Optimization: Exclude parts of the standard library by default. This allows for much smaller
standalone distributions on modules, that can be expected to never be an implicit dependency of
anything, e.g. ar gpar se or pydoc.

Optimization

« Standalone: Do not include encodi ngs. bz2_codec and encodi ngs. i dna anymore, these are
not file system encodings, but require extension modules.

» Make sure we use proper (voi d) arguments for C functions without arguments, as for C functions,
that makes a real difference, they are variable args functions and more expensive to call otherwise.

* For standalone, default to using - - pyt hon- f | ag=no_si t e to avoid the overhead that the typically
unused si t e module incurs. It often includes large parts of the standard library, which we now want
to be more selective about. There is new Python flag added called - - pyt hon-fl ag=si t e that
restores the inclusion of si t e module.

« Standalone: Exclude non-critical codec modules from being technical, i.e. have to be available at
program startup. This removes the need for e.g. bz 2 related extension modules previously included.

« In reformulations, use dictionary methods directly, we have since introduced dictionary specific
methods, and avoid the unnecessary churn during optimization.

» The complex call helper could trigger unnecessary passes in some cases. The pure functions were
immediately optimized, but usages in other modules inside loops sometimes left them in incomplete
states.

» Windows: Avoid repeated hashing of the same files over and over for cl cache.

» Cache dependencies of bytecode demoted modules in first compile and reuse that information in
subsequent compilations.

e Linux: Added option for switching compression method for onefile created with Appl nage. The
default is also now gzi p and not xz which has been observed to cause much slower startup for little
size gains.

« Standalone: For failed relative imports, during compiled time absolute imports were attempted still
and included if successful, the imports would not be use them at run time, but lead to more modules
being included than necessary.

Organisational

 There is now a Discord server for Nuitka community where you can hang out with the developers and
ask questions. It is mirrored with the Gitter community chat, but offers more features.

* The anti - bl oat is now on by default. It helps scalability by changing popular packages to not
provide test frameworks, installation tools etc. in the resulting binary. This oftentimes reduces the
compilation by thousands of modules.

» Also the mul t i processi ng plugin is now on by default. Detecting its need automatically removes a
source of problems for first time users, that didn't know to enable it, but had all kinds of strange
crashes from multiprocessing malfunctioning. This should enhance the out of the box experience by a
lot.

» With this release, the version numbering scheme will be changed. For a long time we have used 4
digits, where one is a leading zero. That was initially done to indicate that it's not yet ready. However,
that is just untrue these days. Therefore, we switch to 3 digits, and a first hotfix with now be 0.7.1
rather than 0.6.19.1, which is too long.

It has been observed that people disregard differences in the third digit, but actually for Nuitka these
have oftentimes been very important updates. This change is to rectify it, and a new release will be
0. 8, and there will be a 1. O release after 0. 9.

» Added a new section to User Manual that explains how to manually load files, such that it is cleaner
and compatible code. Using paths relative to current directory is not the right way, but there are nice
helpers that make it very simple and correct with all kinds of contexts.

» Report the MSVC version in Scons output during compilation. The 2022 version is required, but we
support everything back to 2008, to work on very old systems as well. This will help identifying
differences that arise from there.

* Quality: Find Clang format from MSVC 2022 too. We use in auto format of Nuitka source code, but
need to also search that as a new path.

» Added a spellchecker extension for Visual Code, resulting in many spelling fixes in all kinds of
documentation and code. This finds more things than codespel | , but also has a lot of false alarms.

» Check value of - -onefil e-t enpdi r-spec for typical user errors. It cannot be . as that would
require to overwrite the onefile binary on Windows, and will generally behave very confusing. Warn
about absolute or relative paths going outside of where the binary lives. Can be useful in controlled
setups, but not generally. Also warn about using no variables, making non-unique paths.

» macOS: Flavor detection was largely expanded. The Appl e flavor is recognized on more systems.
Honmebr ewwas newly added, and we actually can detect CPyt hon reliably as a first.

» Added a tool from leo project to create better . pyi files for modules. We will make use of it in the
future to enhance the files created by Nuitka to not only contain hidden dependencies, but optionally
also module signatures.

* Plugins: Clearer information from pysi de2 that patched wheels might be mandatory and
workarounds only patches cannot be done for older Python.

» Added progress bars for DLL dependency detection and DLL copying for standalone. These both can
end up using take a fair bit of time depending on project size, and it's nice to know what's going on.

» macOS: Added support for using both --onefil e and - - nmacos- creat e- app-bundl e as it is
needed for PySide2 due to issues with signing code now.

» Added warning when attempting to include extension modules in an accelerated compilation.

» Modules: Catch the user error of following all imports when creating a module. This is very unlikely to
produce usable results.

« Start integrating Sourcery for improved Nuitka code. It will comment on PRs and automatically
improve Nuitka code as we develop it.

https://discord.gg/nZ9hr9tUck
https://sourcery.ai

» Debugging: Added command line tool f i nd- nodul e that outputs how Nuitka locates a module in the
Python environment it's ran with. That removes the need to use Python prompttodump _ file__ of
imported modules. Some modules even hide parts of their namespace actively during run-time, the
tool will not be affected by that.

Cleanups

» Refactored Python scan previously used for Scons usage on versions that need to run in with another
Python to be more generally usable.

» Use explicit nui t ka. uti | s. Hashi ng module that allows the core to perform these operations with
simpler code.

» macOS: Use i sPat hBel ow for checking if something is a system library for enhanced robustness
and code clarity.

» macOS: Make sure to use our proper error checking wrappers for command execution when using
tools like ot ool or codesi gn.

« Standalone: Avoid a temporary file with a script during technical import detection. These have been
observed to potentially become corrupted, and this avoids any chance of that happening, while also
being simpler code.

 Avoid naming things shl i b and call them ext ensi on instead. Inspired by the spell checker disliking
the former term, which is also less precise.

» Removed the dead architecture selection option for Windows, it was unused for a long time.

» Moved Windows SxS handling of DLLs to a more general place where also macOS specific tasks are
applied, to host standard modification of DLLs during their copying.

Tests

« Better matching of relative filenames for search modes of the individual test suite runners.

» Debugger outputs on segfaults were no longer visible and have been restored.

Summary

This release is tremendous progress for macOS. Finally biting the bullet and paying obscene amounts of
money to rent an M1 machine, it was possible to enhance the support for this platform. Currently typical
packages for macOS are being made compatible as well, so it can now be expected to perform equally
well.

On the quality side, the spell checker has had some positive effects, finding typos and generally
misspelled code, that codespel | does not, due to it being very conservative.

The trend to enhance plugins has continued. The copying of DLLs is very nearly finalized. Making more
plugins enabled by default is seeing a lot of progress, with 2 important ones addressed.

Work on the size of distributions has seen a lot of positive results, in that now standalone distributions are
often very minimal, with many extension modules from standard library no longer being present.

Nuitka Release 0.6.19

This release adds support for 3.10 while also adding very many new optimization, and doing a lot of bug
fixes.

Bug Fixes

e Calls to i nportlib.inport _nodul e with expressions that need releases, i.e. are not constant
values, could crash the compilation. Fixed in 0.6.18.1 already.

« After a fix for the previous release, modules that fail to import are attempted again when another
import is executed. However, during this initialization for top level module in - - nbdul e mode, this
was was done repeatedly, and could cause issues. Fixed in 0.6.18.1 already.

« Standalone: Ignore warning given by pat chel f on Linux with at least newer OpenSUSE. Fixed in
0.6.18.1 already.

* Fix, need to avoid computing large values out of << operation as well. Fixed in 0.6.18.2 already.

This |large value was conputed at run tinme and then if used, also
converted to a string and potentially hashed, taking a long tine.
1 << sys. maxint

» Standalone: Ignore warning given by pat chel f on Linux about a workaround being applied.

* Fix, calls to i nportlib.inport_nodul e were not correctly creating code for dynamic argument
values that need to be released, causing the compilation to report the error. Fixed in 0.6.18.1 already.

* MSYS2: Fix, the console scripts are actually good for it as opposed to CPython, and the batch scripts
should not be installed. Fixed in 0.6.18.2 already.

* Setuptools: Added support older version of set upt ool s in meta bui | d integration of Nuitka.

e Fix, callsto i mportlib.inmport_nodul e with 2 arguments that are dynamic, were not working at
all. Fixed in 0.6.18.2 already.

» Windows: Compiling with MinGW64 without ccache was not working due to issues in Scons. Fixed
in 0.6.18.2 already.

* Fix, the repr built-in was falsely annotated as producing a st r value, but it can be also derived or
uni code in Python2.

« Fix, attribute nodes were not considering the value they are looking up on. Now that more values will
know to have the attributes, that was causing errors. Fixed in 0.6.18.2 already.

* Fix, left shifting can also produce large values and needs to be avoided in that case, similar to what
we do for multiplications already. Fixed in 0.6.18.2 already.

« Ul: The new option - - di sabl e- ccache didn't really have the intended effect. Fixed in 0.6.18.3
already.

« Ul: The progress bar was causing tearing and corrupted outputs, when outputs were made, now
using proper t gdmAPI for doing it, this has been solved. Fixed in 0.6.18.4 already.

* Fix, the constant value sys. ver si on_i nf o didn't yet have support for its type to be also a compile
time constant in e.g. tuples. Fixed in 0.6.18.4 already.

» Onefile: Assertions were not disabled, and on Windows with MinGW®64 this lead to including the C
filenames of the zst d inline copy files and obviously less optimal code. Fixed in 0.6.18.4 already.

« Standalone: Added support for bot t | e. ext loading extensions to resolve at compile time. Fixed in
0.6.18.5 already.

 Standalone: Added support for seedi r required data file. Fixed in 0.6.18.5 already.

* MSYS2: Failed to link when using the static libpython, which is also now the default for MSYS2. Fixed
in 0.6.18.5 already.

» Python3.6+: Fix, the intended finalizer of compiled asyncgen was not present and in fact associated
to help type. This could have caused corruption, but that was also very unlikely. Fixed in 0.6.18.5
already.

» Python3: Fix, need to set _ fil e__ before executing modules, as some modules, e.g. newer
PyWin32 use them to locate things during their initialization already.

« Standalone: Handle all PyWin32 modules that need the special DLLs and not just a few.

* Fix, some . pt h files create module hamespaces with __pat h__ that does not exist, ignore these in
module importing.

» Python2.6-3.4: Fix, modules with an error could use their module name after it was released.

« Distutils: When providing arguments, the method suggested in the docs is not compatible with all
other systems, e.g. not set upt ool s_r ust for which a two elements tuple form needs to be used for
values. Added support for that and documented its use as well in the User Manual.

» Python3.7+: Do no longer allow deleting cell values, this can lead to corruption and should be
avoided, it seems unlikely outside of tests anyway.

 Standalone: Added support for more ciphers and hashes with pycryptodone and
pycrypt odonex, while also only including Ciphers when needed.

« Distutils: Was not including modules or packages only referenced in the entry point definition, but not
in the list of packages. That is not compatible and has been fixed.

* Fix, must not expose the constants blob from extension modules, as loading these into a compiled
binary can cause issues in this case.

« Standalone: Added support for including OpenGL and SSL libraries with PySi de2 and PySi de6
packages.

» Windows: Fix, the cnd files created for uninstalled Python and accelerated programs to find the
Python installation were not passing command line arguments.

» Windows: Executing modules with - - r un was not working properly due to missing escaping of file
paths.

* Fix, parsing . pyi files that make relative imports was not resolving them correctly.

» Python3: Fix, when disabling the console on Windows, make sure the file handles still work and are
not None.

» Windows: Fix, need to claim all OS versions of Windows as supported, otherwise e.g. high DPI
features are not available.

New Features

» Programs that are to be executed with the - mflag, can now be compiled with - - pyt hon-fl ag=-m
and will then behave in a compatible way, i.e. load the containing package first, and have a proper
__package__ value at run time.

» We now can write XML reports with information about the compilation. This is initially for use in PGO
tests, to decide if the expected forms of inclusions have happened and should grow into a proper
reporting tool over time. At this point, the report is not very useful yet.

» Added support for Python 3.10, only mat ch statements are not completely supported. Variations with
| matches that also assign are not allowed currently.

» Windows: Allow using - - ¢l ang with - - m ngw64 to e.g. use the cl ang. exe that is contained in the
Nuitka automatic download rather than gcc. exe.

» Added support for Kivy. Works through a plugin that is automatically enabled and needs no other
inputs, detecting everything from using Kivy at compile time.

» Added initial support for Haiku OS, a clone of BeOS with a few differences in their Python installation.

» Added experimental plugin t ri o that works around issues with that package.

Optimization

* Also trust hard imports made on the module level in function level code, this unlocks many more
static optimization e.g. with sys. ver si on_i nf o when the import and the use are not on the same
level.

* For the built-in type method calls with generic implementation, we now do faster method descriptor
calls. These avoid creating a temporary PyCFunct i on object, that the normal call slot would, this
should make these calls faster. Checking them for compiled function, etc. was only wasteful, so this
makes it more direct.

» Loop and normal merge traces were keeping assignments made before the loop or inside a branch,
that was otherwise unused alive. This should enable more optimization for code with branches and
loops. Also unused loop traces are now recognized and removed as well.

 Avoiding merges of escaped traces with the unescaped trace, there is no point in them. This was
actually happening a lot and should mean a scalability improvement and unlock new optimization as
well.

» Avoid escaping un-init traces. Unset values need not be considered as potentially modified as that
cannot be done.

» The st r shape is now detected through variables, this enables many optimization on the function
level.

» Added many st r operation nodes.

These are specifically all methods with no arguments, as these are very generic to add, introduced a
base class for them, where we know they all have no effect or raise, as these functions are all
guaranteed to succeed and can be served by a common base class.

This covers the str.capitalize, str.upper, str.|lower, str.swapcase, str.title,
str.isalnumstr.isal pha,str.isdigit,str.islower,str.isupper,str.isspace,and
str.istitl e functions.

For static optimization str.find and str.rfind were added, as they are e.g. used in a
sys.version.find(...) style in the os module, helping to decide to not consider OS/ 2 only
modules.

Then, support for st r. i ndex and str. ri ndex was added, as these are very similar to str. fi nd
forms, only that these may raise an exception.

Also add support for str. split and str.rsplit which will be used sometimes for code needed
to be compile time computed, to e.g. detect imports.

Same goes for endswi t h and st art swi t h, the later is e.g. popular with sys. pl at f or mchecks,
and can remove a lot of code from compilation with them now being decided at compile time.

Note

A few st r methods are still missing, with time we will achieve all of them, but this will take
time.

» Added trust for sys. bui | ti n_nodul e_nanes as well. The os module is using it to make platform
determinations.

» When writing constant values, esp. tupl e, | i st, or di ct values, an encoding of "last value" has
been added, avoiding the need to repeat the same value again, making many values more compact.

* When starting Nuitka, it usually restarts itself with information collected in a mode without the si t e
module loaded, and with hash randomization disabled, for deterministic behaviour. There is a option

to prevent this from happening, where the goal is to avoid it, e.g. in testing, say for the coverage
taking, but that meant to parse the options twice, which also loads a lot of code.

Now only a minimal amount of code is used, and the options are parsed only on the restart, and then
an error is raised when it notices, it was not allowed to do so. This also makes code a lot cleaner.

» Specialized comparison code for Python2 | ong and Python3 i nt code, making these operations
much faster to use.

» Specialized comparison code for Python2 uni code and Python3 st r code, making these operations
much faster to use, currently only == and ! = are fully accelerated, the other comparisons will follow.

» Enable static libpython with Python3 Debian packages too. As with Python2, this will improve the
performance of the created binary a lot and reduce size for standalone distribution.

» Comparisons with i n and not i n also consider value traces and go through variables as well where
possible. So far only the rich comparisons andi s andi s not did that.

» Create fixed import nodes in re-formulations rather than _ i nport __ nodes, avoiding later
optimization doing that, and of course that's simpler code too.

 Python 3.10: Added support for uni on types as compiled time constants.

» Modules are now fully optimized before considering which modules they are in turn using, this avoids
temporary dependencies, that later turn out unused, and can shorten the compilation in some cases
by a lot of time.

» On platforms without a static link library, in LTO mode, and with gcc, we can use the - O3 mode,
which doesn't work for | i bpyt hon, but that's not used there. This also includes fake static libpython,
as used by MinGW64 and Anaconda on Windows.

* The anti - bl oat plugin now also handles newer skl ear n and knows more about the standard
library, and its runners which it will exclude from compilation if use for it. Currently that is not the
default, but it should become that.

Organisational

» Migrated the Nuitka blog from Nikola to Sphinx based ABlog and made the whole site render with
Sphinx, making it a lot more usable.

» Added a small presentation about Nuitka on the Download page, to make sure people are aware of
core features.

» The gi plugin is now always on. The copying of the t ypel i b when gi is imported is harmless and
people can disable the plugin if that's not needed.

» The mat pl ot I i b plugin is new and also always on. It previously was part of the nunpy plugin, which
is doing too many unrelated things. Moving this one out is part of a plan to split it up and have it on by
default without causing issues.

» MSYS2: Detecting M nGWand POSI X flavors of this Python. For the M nGWflavor of MSYS2, the
option - - mi ngwb4 is now the default, before it could attempt to use MSVC, which is not going to
work for it. And also the Tcl and Tk installations of it are being detected automatically for the
t k-inter plugin.

» Added Windows version to Nuitka version output, so we have this for bug reports.

» User Manual: Added example explaining how to access values from your code in Nuitka project
options.

« Ul: For Python flavors where we expect a static libpython, the error message will now point out how
to achieve it for each flavor.

» Ul: Disable progress bar when --show scons is used, it makes capturing the output from the
terminal only harder.

« Ul: Catch error of specifying both - - msvc= and - - m ngwe4 options.

« Distutils: Improved error messages when using set upt ool s or bui | d integration and failing to
provide packages to compile.

* Plugins: Removed now unused feature to rename modules on import, as it was only making the code
more complex, while being no more needed after recently adding a place for meta path based
importers to be accounted for.

 Twitter: Use embedded Tweet in Credits, and regular follow button in User Manual.

» Warnings about imports not done, are now only given when optimization can not remove the usage,
and no options related to following have been given.

» Added Windows version to - - ver si on output of Nuitka. This is to more clearly recognize Windows
10 from Windows 11 report, and also the odd Windows 7 report, where tool chain will be different.

* In Visual Code, the default Python used is now 3.9 in the "Linux" C configuration. This matches
Debian Bullseye.

« Nicer outputs from check mode of the auto-format as run for Cl testing, displays problematic files
more clearly.

» Remove broken links to old bug tracker that is no longer online from the Changelog.

 Ul: When hitting CTRL-C during initial technical import detection, no longer ask to submit a bug report
with the exception stack, instead exit cleanly.

» Windows: Enable LTO mode for MinGW64 and other gcc by default. We require a version that can do
it, so take advantage of that.

» For cases, where code generation of a module takes long, make sure its name is output when
CTRL-C is hit.

» Windows: Splash screen only works with MSVC, added error indicator for MinGW64 that states that
and asks for porting help.

Cleanups

» Generate all existing C code for generic builtin type method calls automatically, and use those for
method attribute lookups, making it easier to add more.

» Changed Tkl nt er module to data file providing interface, yielding the 2 directories in question, with
a filter for denos.

» The importing code got a major overhaul and no longer works with relative filenames, or filenames
combined with package names, and module names, but always only with module names and
absolute filenames. This cleans up some of the oldest and most complex code in Nuitka, that had
grown to address various requirements discovered over time.

» Major cleanup of Jinja2 template organisation.

Renamed all C templates from . j 2 to . c. j 2 for clarity, this was not done fully consistent before.
Also move all C templates to nui t ka. codegen package data, it will be confusing to make a
difference between ones used during compile time and for the static generation, and the lines are
going to become blurry.

Added Jinja2 new macro CHECK OBJECTS to avoid branches on argument count in the call code
templates. More of these things should be added.

Cleanup of code that generates header declarations, there was some duplication going on, that made
it hard to generate consistent code.

* Removed nui tka. finalizatios. Finalizati onBase, we only have one final visitor that does
everything, and that of course makes a lot of sense for its performance.

» Major cleanup of the Scons C compiler configuration setup. Moved things to the dedicate function,
and harmonized it more.

» Resolved deprecation warnings given by with - - pyt hon- debug for Nuitka.

Tests

» Started test suite for Python PGO, not yet completely working though, it's not yet doing what is
needed though.

» Added generated test that exercises str methods in multiple variations.

» Revived r ef | ect ed test suite, that had been removed, because of Nuitka special needs. This one is
not yet passing again though, due to a few details not yet being as compatible as needed.

» Added test suite for CPython 3.10 and enable execution of tests with this version on GitHub actions.

Summary
This release is another big step forward.

The amount of optimization added is again very large, some of which yet again unlocks more static
optimization of module imports, that previously would have to be considered implicit. Now analyzing these
on the function level as well, we can start searching for cases, where it could be done, but is not done yet.

After starting with di ct, method optimization has focused on str which is esp. important for static
optimization of imports. The next goal will here be to cover |i st which are important for run time
performance and currently not yet optimized. Future releases will progress there, and also add more

types.

The C type specialization for Python3 has finally progressed, such that it is also covering the | ong and
uni code and as such not limited to Python2 as much. The focus now needs to turn back to not working
with PyCbj ect * for these types, but e.g. with += 1 to make it directly work with CLONG rather than LONG
for which structural changes in code generation will be needed.

For scalability, the anti - bl oat work has not yet progressed as much as to be able to enable it by
default. It needs to be more possible to disable it where it causes problems, e.g. when somebody really
wants to include pytest and test frameworks generally, that's something that needs to be doable.
Compiling without ant i - bl oat plugin is something that is immediately noticeable in exploding module
amounts. It is very urgently recommended to enable it for your compilations.

The support for Windows has been further refined, actually fixing a few important issues, esp. for the Qt
bindings too.

This release adds support for 3.10 outside of very special mat ch statements, bringing Nuitka back to
where it works great with recent Python. Unfortunately or der edset is not available for it yet, which
means it will be slower than 3.9 during compilation.

Overall, Nuitka is closing many open lines of action with this. The set upt ool s support has yet again
improved and at this point should be very good.

Nuitka Release 0.6.18

This release has a focus on new features of all kinds, and then also new kinds of performance
improvements, some of which enable static optimization of what normally would be dynamic imports, while
also polishing plugins and adding also many new features and a huge amount of organisational changes.

Bug Fixes

» Python3.6+: Fixes to asyncgen, need to raise St opAsyncl t er ati on rather than St oplterati on
in some situations to be fully compatible.

« Onefile: Fix, LTO mode was always enabled for onefile compilation, but not all compilers support it
yet, e.g. MinGW®64 did not. Fixed in 0.6.17.1 already.

 Fix, t ype calls with 3 arguments didn't annotate their potential exception exit. Fixed in 0.6.17.2
already.

* Fix, trusted module constants were not working properly in all cases. Fixed in 0.6.17.2 already.

 Fix, pkg-resour ces exiting with error at compile time for unresolved requirements in compiled
code, but these can of course still be optional, i.e. that code would never run. Instead give only a
warning, and run time fail on these. Fixed in 0.6.17.2 already.

« Standalone: Prevent the inclusion of dr mlibraries on Linux, they have to come from the target OS at
run time. Fixed in 0.6.17.2 already.

» Standalone: Added missing implicit dependency for i pcqueue module. Fixed in 0.6.17.3 already.

* Fix, Qt webengine support for everything but PySi de2 wasn't working properly. Partially fixed in
0.6.17.3 already.

» Windows: Fix, bootstrap splash screen code for Windows was missing in release packages. Fixed in
0.6.17.3 already.

* Fix, could crash on known implicit data directories not present. Fixed in 0.6.17.3 already.

» macOS: Disable download of ccache binary for M1 architecture and systems before macOS 10.14
as it doesn't work on these. Fixed in 0.6.17.3 already.

« Standalone: The pendul um | ocal s handling for Python 3.6 was regressed. Fixed in 0.6.17.4
already.

 Onefile: Make sure the child process is cleaned up even after its successful exit. Fixed in 0.6.17.4
already.

« Standalone: Added support for xm schenma. Fixed in 0.6.17.4 already.
» Standalone: Added support for cur ses on Windows. Fixed in 0.6.17.4 already.
» Standalone: Added support for coi ncur ve module. Fixed in 0.6.17.5 already.

» Python3.4+: Up until Python3.7 inclusive, a workaround for stream encoding (was ASCII), causing
crashes on output of non-ASCII, other Python versions are not affected. Fixed in 0.6.17.5 already.

» Python2: Workaround for LTO error messages from older gcc versions. Fixed in 0.6.17.5 already.
« Standalone: Added support for wi n32pri nt . Fixed in 0.6.17.6 already.

* Fix, need to prevent usage of static | i bpyt hon in module mode or else on some Python versions,
linker errors can happen. Fixed in 0.6.17.6 already.

» Standalone: Do not load site module early anymore. This might have caused issues in some
configurations, but really only would be needed for loading i nspect which doesn’t depend on it in
standalone mode. Fixed in 0.6.17.6 already.

* Fix, could crash with generator expressions in finally blocks of tried blocks that return. Fixed in
0.6.17.7 already.

try:
return 9
finally:
"".join(x for x in b"some_iterable")

» Python3.5+: Compatibility of comparisons with types. Corouti neType and
types. AsyncCener at or Type types was not yet implemented. Fixed in 0.6.17.7 already.

These al ready worked:
assert isinstance(conpil edCoroutine(), types. CoroutineType) is True
assert isinstance(conpil edAsyncgen(), types. AsyncGeneratorType) is True

These now work too:

assert type(conpil edCoroutine()) == types. CoroutineType

assert type(conpil edAsyncgen()) == types. AsyncGener at or Type
« Standalone: Added support for r uanel . yam . Fixed in 0.6.17.7 already.

« Distutils: Fix, when building more than one package, things could go wrong. Fixed in 0.6.17.7
already.

* Fix, for module mode filenames are used, and for packages, you can specify a directory, however, a
trailing slash was not working. Fixed in 0.6.17.7 already.

» Compatibility: Fix, when locating modules, a package directory and an extension module of the same
name were not used according to priority. Fixed in 0.6.17.7 already.

» Standalone: Added workaround i nportli b_resour ces insisting on Python source files to exist to
be able to load datafiles. Fixed in 0.6.17.7 already.

« Standalone: Properly detect usage of hard imports from standard library in --foll owstdlib
mode.

» Standalone: Added data files for opensapi _spec_val i dat or.
* MSYS2: Fix, need to normalize compiler paths before comparing.
» Anaconda: For accelerated binaries, the created . cnd file wasn't containing all needed environment.

» macOS: Set minimum OS version derived from the Python executable used, this should make it work
on all supported platforms (of that Python).

« Standalone: Added support for automatic inclusion of xm schema package datafiles.
» Standalone: Added support for automatic inclusion of eel package datafiles.

« Standalone: Added support for h5py package.

« Standalone: Added support for phonenunber s package.

« Standalone: Added support for f eedpar ser package, this currently depends on the anti - bl oat
plugin to be enabled, which will become enabled by default in the future.

« Standalone: Added gi plugin for said package that copies t ypel i b files and sets the search path for
them in standalone mode.

« Standalone: Added necessary datafiles for eel package.

« Standalone: Added support for @ WebEngi ne to all Qt bindings and also make it work on Linux.
Before only PySide2 on Windows was supported.

» Python3: Fix, the al | built-in was wrongly assuming that bytes values could not be false, but in fact
they are if they contain \ O which is actually false. The same does not happen for string values, but
that's a difference to be considered.

» Windows: The LTO was supposed to be used automatically on with MSVC 14.2 or higher, but that
was regressed and has been repaired now.

« Standalone: Extension modules contained in packages, depending on their mode of loading had the
__package__ value set to a wrong value, which at least impacted new matplotlib detection of Qt
backend.

» Windows: The pyt hon set up. py i nstal |l was installing binaries for no good reason.

New Features

* Setuptools support. Documented bdi st _nui t ka and bdi st _wheel integration and added support
for Nuitka as a bui | d package backend in pyproject.ton files. Using Nuitka to build your
wheels is supposed to be easy now.

» Added experimental support for Python 3.10, there are however still important issues with
compatibility with the CPython 3.9 test suite with at least asyncgen and coroutines.

*macOS: For app bundles, version information can be provided with the new option
- -mRcos- app- ver si on.

» Added Python vendor detection of Anaconda, pyenv, Appl e Pyt hon, and pyenv and output the
result in version output, this should make it easiert to analyse reported issues.

* Plugins: Also handle the usage of __nanme__ for metadata version resolution of the pkg- r esour ces
standard plugin.

* Plugins: The data-files standard plugin now reads configuration from a Yaml file that
dat a-fil es. ynml making it more accessible for contributions.

» Windows: Allow enforcing usage of MSVC with --nsvc=l at est. This allows you to prevent
accidental usage of MinGW64 on Windows, when MSVC is intended, but achieves that without fixing
the version to use.

» Windows: Added support for LTO with MinGW64 on Windows, this was previously limited to the
MSVC compiler only.

» Windows: Added support for using - - debugger with the downloaded MinGW64 provided gdb. exe.

Note

It doesn't work when executed from a Git bash prompt, but e.g. from a standard command
prompt.

» Added new experimental flag for compiled types to inherit from uncompiled types. This should allow
easier and more complete compatibility, making even code in extension modules that uses
PyQbj ect _I sl nst ance work, providing support for packages like pydanti c.

* Plugins: The Qt binding plugins now resolve pyqt gr aph selection of binding by hard coding
Qr_LI B. This will allow to resolve its own dynamic imports depending on that variable at compile
time. At this time, the compile time analysis is not covering all cases yet, but we hope to get there.

» macOS: Provide m nGCS for standalone builds, derived from the setting of the Python used to create
it.

» Ul: Added new option - - di sabl e- ccache to prevent Nuitka from injecting ccache (Clang, gcc)
and cl cache (MSVC) for caching the C results of the compilation.

* Plugins: Added experimental support for PyQ 6. While using PySi de2 or PySi de6 is very much
recommended with Nuitka, this allows its use.

» Ul: Added option - - | ow nmenor y to allow the user to specify that the compilation should attempt to
use less memory where possible, this increases compile times, but might enable compilation on
some weaker machines.

Optimization

» Added dedicated attribute nodes for attribute values that match names of dictionary operations.
These are optimized into dedicate nodes for methods of dictionaries should their expression have an
exact dictionary shape. These in turn optimize calls on them statically into dictionary operations. This
is done for all methods of di ct for both Python2 and Python3, namely get, itens, iteritens,
i terval ues, iterkeys, vi ewal ues, vi ewkeys, pop, setdefaul t, has_key, cl ear, copy,
updat e.

The new operation nodes also add compile time optimization for being used on constant values
where possible.

» Also added dedicated attribute nodes for string operations. For operations, currently only part of the
methods are done. These are currently only join, strip, Istrip, rstrip, partition,
rpartition. Besides performance, this subset was enough to cover compile time evaluation of
module name computation for i nportli b. i nport_nodul e as done by SWIG bindings, allowing
these implicit dependencies to be discovered at compile time without any help, marking a significant
improvement for standalone usage.

» Annotate type shape for dictionary i n/not in nodes, this was missing unlike in the generic
i n/not i n nodes.

» Faster processing of "expression only" statement nodes. These are nodes, where a value is
computed, but then not used, it still needs to be accounted for though, representing the value
release.

somet hing() # ignores return value, nmeans statenment only node

» Windows: Enabled LTO by default with MinGW64, which makes it produce much faster results. It now
yield faster binaries than MSVC 2019 with pystone.

» Windows: Added support for C level PGO (Profile Guided Optimization) with MSVC and MinGW64,
allowing extra speed boosts from the C compilation on Windows as well.

» Standalone: Better handling of requests. packages and si x. noves. The old handling could
duplicate their code. Now uses a new mechanism to resolve metapath based importer effects at
compile time.

» Avoid useless exception checks in our dictionary helpers, as these could only occur when working
with dictionary overloads, which we know to not be the case.

* For nodes, have dedicated child mixin classes for nodes with a single child value and for nodes with a
tuple of children, so that these common kind of nodes operate faster and don't have to check at run
time what type they are during access.

« Actually make use of the egg cache. Nuitka was unpacking eggs in every compilation, but in wheel
installs, these can be quite common and should be faster.

« Star arguments annotated their type shape, but the methods to check for dictionary exactly were not
affected by this preventing optimization in some cases.

» Added ant i - bl oat configuration for main programs present in the modules of the standard library,
these can be removed from the compilation and should lower dependencies detected.

» Using static libpython with pyenv automatically. This should give both smaller (standalone mode)
and faster results as is the case when using this feature..

* Plugins: Added improvements to the anti - bl oat plugin for gevent to avoid including its testing
framework.

» Python3.9+: Faster calls into uncompiled functions from compiled code using newly introduced API of
that version.

« Statically optimize i nportli b. i nmport_nodul e calls with constant args into fixed name imports.

» Added support for sys. ver si on_i nf o to be used as a compile time constant. This should enable
many checks to be done at compile time.

» Added hard import and static optimization for t ypi ng. TYPE_CHECKI NG

» Also compute named import lookup through variables, expanding their use to more cases, e.g. like
this:

i nport sys

i f sys.version_info.mjor >= 3:

« Also optimize compile time comparisons through variable names if possible, i.e. the value cannot
have changed.

« Faster calls of uncompiled code with Python3.9 or higher avoiding DLL call overhead.

Organisational

e Commercial: There are Buy Now buttons available now for the direct purchase of the Nuitka
Commercial offering. Finally Credit Card, Google Pay, and Apple Pay are all possible. This is using
Stripe. Get in touch with me if you want to use bank transfer, which is of course still best for me.

* The main script runners for Python2 have been renamed to nui t ka2 and nui t ka2- r un, which is
consistent with what we do for Python3, and avoids issues where bi n folder ends up in sys. pat h
and prevents the loading of nui t ka package.

» Windows: Added support for Visual Studio 2022 by updating the inline copy of Scons used for
Windows to version 4.3.0, on non Windows, the other ones will keep being used.

» Windows: Requiring latest MinGW64 with version 11.2 as released by winlibs, because this is known
to allow LTO, where previous releases were missing needed binaries.

* Reject standalone mode usage with Apple Python, as it works only with the other supported Pythons,
avoiding pitfalls in attempting to distribute it.

* Move hosting of documentation to Sphinx, added Changelog and some early parts of API
documentation there too. This gives much more readable results than what we have done so far with
Nikola. More things will move there.

» User Manual: Add description how to access code attributes in nui t ka- pr oj ect style options.
» User Manual: Added commands used to generate performance numbers for Python.

» User Manual: List other Python's for which static linking is supposed to work.

 Improved help for - - i ncl ude- package with a hint how to exclude some of the subpackages.

« Started using Jinja2 in code templates with a few types, adding basic infrastructure to do that. This
will be expanded in the future.

» Updated plugin documentation with more recent information.
» Added Python flavor as detected to the - - ver si on output for improved bug reports.
* Linux: Added distribution name to - - ver si on output for improved bug reports.

» Always enable the gevent plugin, we want to achieve this for all plugins, and this is only a step in
that direction.

» Added project URLs for PyPI, so people looking at it from there have some immediate places to
checkout.

» Debian: Use common code for included PDF files, which have page styles and automatic corrections
for r st 2pdf applied.

» Updated to latest bl ack, i sort, pyl i nt versions.

file:///pages/commercial.html
file:///pages/commercial.html

* The binary names for Python2 changed from nuitka and nuitka-run to nuitka2 and
nui t ka2-run. This harmonizes it with Python2 and avoids issues, where the bi n folder in
sys. pat h can cause issues with re-execution of Nuitka finding those to import.

Note

You ought to be using pyt hon -m nui t ka style of calling Nuitka anyway, as it gives you
best control over what Python is used to run Nuitka, you can pick pyt hon2 there if you want it
to run with that, even with full path. Check the relevant section in the User Manual too.

» Added support for Fedora 34 and Fedora 35.

Cleanups

* In a change of mind - - enabl e- pl ugi n has become the only form to enable a plugin used in
documentation and tests.

» Massive cleanup of nunpy and Qt binding plugins, e.g. pysi de2. Data files and DLLs are now
provided through proper declarative objects rather than copied manually. The handling of PyQt5 from
the plugin should have improved as a side effect.

» Massive cleanups of all documentation in ReST format. Plenty of formatting errors were resolved.
Many typos were identified and globally fixed. Spellings e.g. of "Developer Manual" are now enforced
with automatic replacements. Also missing or wrong quotes were turned to proper methods. Also
enforce code language for shell scripts to be the same everywhere.

* Removed last usages of get Pyt honFl ags() and made the function private, replacing their use with
dedicated function to check for individual flags.

» Avoid string comparison with nui t ka. utils. get OS() and instead add accessors that are more
readable, e.g. nui tka. utils.i sMacOS() and put them to use where it makes sense.

» Replaced usages of string tests in list of python flags specified, with functions that check for a specific
name with a speaking function name.

» Added mixin for expressions that have no side effect outside of their value, providing common
method implementation more consistently.

* Remove code geared to using old PyLint and on Python2, we no longer use that. Also removed
annotations only used for overriding Python2 builtins from Nuitka code.

» The PDF specific annotations were moved into being applied only in the PDF building step, avoiding
errors for raw PDF directives.

 Apply Visual Code auto-format to our Yaml files. This is unfortunately not and automatic formatting
yet.

* Introduce dedicated nuitka. utils.Json module, as we intend to expand its usage, e.g. for
caching.

» Replacing remaining usages of pri nt functions with uses of nui t ka. Tr aci ng instead.

» Massive cleanup of the gevent plugin, user proper method to execute code after module load, rather
than source patching without need. The plugin no longer messes with inclusions that other code
already provides for standalone.

» Using own helper to update sys module attributes, to avoid errors from old C compilers, and also
cleaning up using code to not have to cast on string constants.

» More consistent naming of plugin classes, and enforce a relationship of detector class names to the
names of detected plugins. The new naming consistency is now enforced.

Tests

» Added CPython 3.10 test suite, it needs more work though.
» Added generated test that exercises dictionary methods in multiple variations.

* Test suite names were specified wrongly in a few of them.

Summary

This release is again a huge step forward. It refines on PGO and LTO for C level to work with all relevant
compilers. Internally Python level PGO is prepared, but only a future release will feature it. With that,
scalability improvements as well as even more performance improvements will be unlocked.

The amount of optimization added this time is even bigger, some of which unlocks static optimization of
module imports, that previously would have to be considered implicit. This work will need one extra step,
namely to also trace hard imports on the function level, then this will be an extremely powerful tool to solve
these kinds of issues in the future. The next release will have this and go even further in this area.

With the dictionary methods, and some string methods, also a whole new kind of optimization has been
started. These will make working with di ct containers faster, but obviously a lot of ground is to cover
there still, e.g. | i st values are a natural target not yet started. Future releases will progress here.

Type specialization for Python3 has not progressed though, and will have to be featured in a future
releases though.

For scalability, the ant i - bl oat work has continued, and this should be the last release, where this is not
on by default. Compiling without it is something that is immediately noticeable in exploding module
amounts. It is very urgently recommended to enable it for your compilations.

The support for macOS has been refined, with version information being possible to add, and adding
information to the binary about which OSes are supported, as well as rejecting Apple Python, which is only
a trap if you want to deploy to other OS versions. More work will be needed to support pyenv or even
Homebrew there too, for now CPython is still the recommended platform to use.

This release achieves major compatibility improvements. And of course, the experimental support for 3.10
is not the least. The next release will strive to complete the support for it fully, but this should be usable at
least, for now please stay on 3.9 if you can.

Nuitka Release 0.6.17

This release has a focus on performance improvements, while also polishing plugins and adding many
new features.

Bug Fixes

* Fix, plugins were not catching being used on packages not installed. Fixed in 0.6.16.2 already.

* macOS: Fix weaknesses in the ot ool parsing to determine DLL dependency parsing. Fixed in
0.6.16.2 already.

* Linux: Allow onefile program args with spaces contained to be properly passed. Fixed in 0.6.16.3
already.

» Windows: Avoid using less portable C function for %1 D%formatting, which restores compilation on
Windows 7 with old toolchains. Fixed in 0.6.16.3 already.

» Standalone: Added support for f st ri ngs package. Fixed in 0.6.16.3 already.

» Compatibility: Fix, need to import . pt h files after si t e module, not before. This was causing crashes
on CentOS7 with Python2. Fixed in 0.6.16.3 already.

» Compatibility: Fix, when extension modules failed to load, in some cases the | nport Err or was lost
to a KeyErr or . Fixed in 0.6.16.3 already.

* Fix, linker resource modes code and | i nker were not working anymore, but are needed with LTO
mode at least. Fixed in 0.6.16.3 already.

« Standalone: Bytecode modules with null bytes in standard library, typically from disk corruption, were
not handled properly. Fixed in 0.6.16.3 already.

* Fix, failed . t hr ow() into generators could cause corruption. Fixed in 0.6.16.4 already.

» Python2: Fix, the bytecode compilation didn't respect the - - pyt hon-fl ag=no_asserts mode.
Fixed in 0.6.16.4 already.

* Fix, calls were not annotating their arguments as escaped, causing corruption of mutable in static
optimization. Fixed in 0.6.16.5 already.

 Fix, some sequence objects, e.g. nunpy. ar ray actually implement in-place add operations that
need to be called. Fixed in 0.6.16.5 already.

» Windows: Fix, onefile binaries were not working after being signed. This now works.
» Standalone: Added missing implicit dependency for skl ear n.

» Compatibility: Modules giving Synt axEr r or from source were not properly handled, giving run time
| mport Error . Now they are giving Synt axEr r or .

* Fix, the LTO mode has issues with i nchi n usage on older gcc, so use | i nker mode when it is
enabled.

» Python3: Fix, locals dict codes were not properly checking errors that the mapping might raise when
setting values.

* Fix, modules named ent r y were causing compile time errors in the C stage.
» macOS: Never include files from OS private frameworks in standalone mode.
* Fix, the python flag - - pyt hon- f | ag=no_war ni ng wasn't working on all platforms.

» Compatibility: Fix, the main code of the si t e module wasn't executing, so that its added builtins were
not there. Of course, you ought to use - - pyt hon- f | ag=no_si t e to not have it in the normal case.

» Python2: Added code path to handle edited standard library source code which then has no valid
bytecode file.

» Anaconda: In module mode, the CondaCC wasn't recognized as form of gcc.
* Fix, bytecode modules could shadow compiled modules of the same name.

« Onefile: Fix, expansion of %1 D%wasn't working properly on non-Windows, making temp paths less
unique. The time stamp is not necessarily enough.

 Fix, mul ti processi ng error exits from slave processes were not reporting tracebacks.

« Standalone: Added xcbgl i nt egrati ons to the list of sensible Qt plugins to include by default,
otherwise rendering will be inferior.

« Standalone: Added pl at f or nt henes to the list of sensible Qt plugins to include by default,
otherwise file dialogs on non-Windows would be inferior.

* Fix, created . pyi files were not ordered deterministically.
» Standalone: Added support for wi n32fi | e.
* Fix, namespace packages were not using run time values for their __pat h__ value.

» Python3.7+: Fix, was leaking At t r i but eErr or exceptions during name imports.

* Fix, standard library detection could fail for relative paths.

New Features

» Added experimental support for C level PGO (Profile Guided Optimization), which runs your program
and then uses feedback from the execution. At this time only gcc is supported, and only C compiler is
collecting feedback. Check the User Manual for a table with current results.

» macOS: Added experimental support for creating application bundles. For these, icons can be
specified and console can be disabled. But at this time, onefile and accelerated mode are not yet
usable with it, only standalone mode works.

* Plugins: Add support for pkg_r esour ces. r equi r e calls to be resolved at compile time. These are
not working at run time, but this avoids the issue very nicely.

 Plugins: Massive improvements to the anti - bl oat plugin, it can now make nunpy, sci py,
ski mage, pywt , and mat pl ot | i b use much less packages and has better error handling.

* Plugins: Added ant i - bl oat ability ability to append code to a module, which might get used in the
future by other plugins that need some sort of post load changes to be applied.

* Plugins: Added ability to replace code of functions at parse time, and use this in ant i - bl oat plugin
to replace functions that do unnecessary stuff with variants that often just do nothing. This is
illustrated here.

gevent. util:
description: "renove gevent release framework"
change_functi on:
"prerel easer _nmiddle": "' (lanbda data: None)'"
"postrel easer _before": "' (lanbda data: None)'"

This example is removing gevent code that loads dependencies used for their Cl release process,
that need not be part of normal programs.

» Added ability to persist source code changes done by plugins in the Python installation. This is
considered experimental and needs write access to the Python installation, so this is best done in a
virtualenv and it may confuse plugins.

» Added support for mul ti processi ng. tracker and spawn mode for all platforms. For non-default
modes outside of Windows, you need to - - enabl e- pl ugi n=nul ti pr ocessi ng to use these.

* Plugins: Allow multiple entry points to be provided by one or several plugins for the same modules.
These are now merged into one automatically.

» Standalone: Fix for numpy not working when compiling with - - pyt hon- f | ag=no_docst ri ngs.

 Fix, method calls were not respecting descriptors provided by types with non-generic attribute
lookups.

» Windows: Add support for using self-compiled Python3 from the build folder too.
» Added support for Nuitka-Python 2.7, which will be our faster Python fork.

» Colorized output for error outputs encountered in Scons, these are now yellow for better recognition.
Optimization

* Faster threading code was used for Python3.8 or higher, and this has been extended to 3.7 on
Windows, but we won't be able to have it other platforms and not on earlier Python3 versions.

* Faster calls esp. with keyword arguments. Call with keywords no longer create dictionaries if the call
target supports that, and with 3.8 or higher, non-compiled code that allows vectorcall is taken
advantage of.

* Faster class creation that avoids creation of argument tuples and dictionaries.
» Faster attribute check code in case of non-present attributes.
» Faster unbound method calls, unlike bound methods calls these were not optimized as well yet.
* Type shapes for star arguments are now known and used in optimization.
def f(*args, **kwargs):
type(args) # Statically known to be tuple
type(kwargs) # Statically known to be dict
» Python2: Faster old-style class creation. These are classes that do not explicitly inherit from obj ect .
» Python2: Faster string comparisons for Python by specializing for the st r type as well.

» Python3: Added specialization for byt es comparisons too. These are naturally very much the same
as st r comparisons in Python2.

» Added specialization for | i st comparisons too. We had them for t upl es only so far.
« Faster method calls when called from Python core, ourt p_cal | slot wasn't as good as it can be.

» Optimization: Faster deep copies of constants. This can speed up constant calls with mutable types.
Before it was checking the type too often to be fast.

« Allow using static linking with Debian Python giving much better performance with the system Python.
This is actually a huge improvement as it makes things much faster. So far it's only automatically
enabled for Python2, but it seems to work for Python3 on Debian too. Needs more tweaking in the
future.

» Optimization: Added funct ool s module to the list of hard imports in preparation of optimizing
funct ool s. parti al towork better with compiled functions.

» Python2: Demote to xr ange when iterating over r ange calls, even for small ranges, they are always
faster. Previously this was only done for values with at least 256 values.

» Enable LTO automatically for Debian Python, this also allows more optimization.
e Enable LTO automatically for Anaconda with CondaCC on non-Windows, also allowing more
optimization.

Organisational

» Added section in the User Manual on how to deal with memory issues and C compiler bugs. This is a
frequent topic and should serve as a pointer for this kind of issue.

* The - - I t 0 option was changed to require an argument, so that it can also be disabled. The default is
aut o which is the old behaviour where it's enabled if possible.

» Changed - - no- progress to - - no- progressbar in order to make it more clear what it's about.
Previously it was possible to relate it to - - show- pr ogr ess.

* No longer require specific versions of dependencies in our r equi r enent s. t xt and relegate those
to only being in r equi renent s- devel . t xt such that by default Nuitka doesn't collide with user
requirements on those same packages which absolutely all the time don't really make a difference.

* Added abilty to check all unpushed changes with pylint with a new
. I bi n/ check-nuitka-wi th-pylint --unpushed option. Before it was only possible to make
the check (quickly) with - - di f f, but that stopped working after commits are made.

 Revived support for vimpr of based analysis of compiled programs, but it requires a fork of it now.

» Make Windows specific compiler options visible on all platforms. There is no point in them being
errors, instead warnings are given when they are specified on non-Windows.

» Added project variable Commer ci al for use in Nuitka project syntax.
» Consistent use of metavars for nicer help output should make it more readable.

» Avoid ast tree dumps in case of Keyboar dl nt err upt exceptions, they are just very noisy. Also
not annotate where Nuitka was in optimization when a plugin is asking to sysexi t .

Cleanups

» Encoding names for UTF-8 in calls to . encode() were used inconsistent with and without dashes in
the source code, added cleanup to auto-format that picks the one blessed.

* Cleanup taking of run time traces of DLLs used in preparation for using it in main code eventually,
moving it to a dedicated module.

 Avoid special names for Nuitka options in test runner, this only adds a level of confusion. Needs more
work in future release.

 Unify implementation to create modules into single function. We had 3 forms, one in recursion, one
for main module, and one for plugin generated code. This makes it much easier to understand and
use in plugins.

* Further reduced code duplication between the two Scons files, but more work will be needed there.

» Escaped variables are still known to be assigned/unassigned rather than unknown, allowing for many
optimizations to still work on them., esp. for immutable value

» Enhanced auto-format for rest documents, bullet list spacing is now consistent and spelling of
organisational is unified automatically.

» Moved icon conversion functionality to separate module, so it can be reused for other platforms more
easily.

Tests

* Removed r ef | ect ed test, because of Nuitka special needs to restart with variable Python flags.
This could be reverted though, since Nuitka no longer needs anything outside inline copies, and
therefore no longer loads from site packages.

* Use anti - bl oat plugin in standalone tests of Numpy, Pandas and tests to reduce their compile
times, these have become much more manageable now.

» Enhanced checks for used files to use proper below path checks for their ignoring.
» Remove reflected test, compiling Nuitka with Nuitka has gotten too difficult.

« Verify constants integrity at program end in debug mode again, so we catch corruption of them in
tests.

Summary

This release is one of the most important ones in a long time. The PGO and LTO, and static libpython work
make a big different for performance of created binaries.

The amount of optimization added is also huge, calls are much faster now, and object creations too. These
avoiding to go through actual dictionaries and tuples in most cases when compiled code interacts gives
very significant gains. This can be seen in the increase of pystone performance.

The new type specializations allow many operations to be much faster. More work will follow in this area
and important types, str and i nt do not have specialized comparisons for Python3, holding it back
somewhat to where our Python2 performance is for these things.

For scalability, the anti - bl oat work is extremely valuable, and this plugin should become active by
default in the future, for now it must be strongly recommended. It needs more control over what parts you
want to deactivate from it, in case of it causing problems, then we can and should do it.

The support for macOS has been enhanced a lot, and will become perfect in the next release (currently
develop). The bundle mode is needed for all kinds of GUI programs to not need a console. This platform is
becoming as well supported as the others now.

Generally this release marks a huge step forward. We hope to add Python level PGO in the coming
releases, for type knowledge retrofitted without any annotations used. Benchmarks will become more fun
clearly.

Nuitka Release 0.6.16

This release is mostly polishing and new features. Optimization looked only at threading performance, and
LTO improvements on Windows.

Bug Fixes

* Fix, the pkg-r esour ces failed to resolve versions for i nportli b. met adat a from its standard
library at compile time. Fixed in 0.6.15.1 already.

« Standalone: Fix, - - i ncl ude- nodul e was not including the module if it was an extension modules,
but only for Python modules. Fixed in 0.6.15.1 already.

« Standalone: Added missing implicit dependencies for gi . over ri des. Fixed in 0.6.15.1 already.

» Python3.9: Fix, could crash when using generic aliases in certain configurations. Fixed in 0.6.15.2
already.

* Fix, the tensorflow plugin needed an update due to changed API. Fixed in 0.6.15.3 already.
* When error exiting Nuitka, it now closes any open progress bar for cleaner display.
« Standalone: Added missing dependency for ski mage.

« Standalone: The nunpy plugin now automatically includes Qt backend if any of the Qt binding plugins
is active.

New Features

» Python3.5+: Added support for onefile compression. This is using zst d which is known to give very
good compression with very high decompression, much better than e.g. zI i b.

» macOS: Added onefile support.
» FreeBSD: Added onefile support.

* Linux: Added method to use tempdir onefile support as used on other platforms as an alternative to
Appl mage based.

» Added support for recursive addition of files from directories with patterns.
* Attaching the payload to onefile now has a progress bar too.

» Windows: Prelimary support for the yet unfinished Nuitka-Python that allows static linking and higher
performance on Windows, esp. with Nuitka.

» Windows: In acceleration mode, for uninstalled Python, now a CMD file is created rather than copying
the DLL to the binary directory. That avoids conflicts with architectures and of course useless file
copies.

* New abilities for plugin ant i - bl oat allow to make it an error when certain modules are imported.
Added more specific options for usual trouble makes, esp. set upt ool s, pyt est are causing an
explosion for some programs, while being unused code. This makes it now easier to oversee this.

* It's now possible to override appdi rs decision for where cache files live with an environment
variable NU TKA CACHE DI R.

» The - 0 option now also works with onefile mode, it previously rejected anything but acceleration
mode. Fixed in 0.6.15.3 already.

* Plugins: It's now possible for multiple plugins to provide pre or post load code for the same module.

» Added indications for compilation modes st andal one and onefile to the _ conpiled _
attribute.

* Plugins: Give nicer error message in case of colliding command line options.
Optimization

» Faster threading code is now using for Python3.8 or higher and not only 3.9, giving a performance
boost, esp. on Windows.

» Using - - | t 0 is now the default with MSVC 2019 or higher. This will given smaller and faster binaries.
It has been available for some time, but not been the default yet.

Cleanups

 Using different progress bar titles for C compilation of Python code and C compilation of onefile
bootstrap.

» Moved platform specific detections, for FreeBSD/OpenBSD/macOS out of the Scons file and to
common Nuitka code, sometimes eliminating duplications with one version being more correct than
the other.

» Massive cleanup of datafile plugin, using pattern descriptions, so more code duplication can be
removed.

» More cleanup of the scons files, sharing more common code.

Organisational

» Under the name Nuitka-Python we are now also developing a fork of CPython with enhancements,
you can follow and joint it at https://github.com/Nuitka/Nuitka-Python but at this time it is not yet ready
for prime time.

 Onefile under Windows now only is temporary file mode. Until we figure out how to solve the
problems with locking and caching, the mode where it installs to the AppData of the user is no longer
available.

» Renamed the plugin responsible for PyQt5 support to match the names of others. Note however, that
at this time, PySide2 or PySide6 are to be recommended.

» Make it clear that PySide 6.1.2 is actually going to be the supported version of PySide6.
* Use MSVC in GitHub actions.

Summary

This release had a massive focus on expanding existing features, esp. for onefile, and plugins API, such
that we can now configure ant i - bl oat with yaml, have really nice datafile handling options, and have
onefile on all OSes practically.

https://github.com/Nuitka/Nuitka-Python

Nuitka Release 0.6.15

This release polished previous work with bug fixes, but there are also important new things that help make
Nuitka more usable, with one important performance improvement.

Bug Fixes

* Fix, hard imports were not automatically used in code generation leading to errors when used. Fixed
in 0.6.14.2 already.

» Windows: Fix, cl cache was disabled by mistake. Fixed in 0.6.14.2 already.
« Standalone: Added data files for j sonschema to be copied automatically.

« Standalone: Support for pendul um wasn't working anymore with the last release due to plugin
interface issues.

* Retry downloads without SSL if that fails, as some Python do not have working SSL. Fixed in 0.6.14.5
already.

* Fix, the ccache path wasn't working if it contained spaces. Fixed in 0.6.14.5 already.

* Onefile: For Linux and ARM using proper download off appimage. Fixed in 0.6.14.5 already.
« Standalone: Added support for pyr eadst at . Fixed in 0.6.14.5 already.

« Standalone: Added missing dependencies for pandas. Fixed in 0.6.14.6 already.

« Standalone: Some preloaded packages from . pt h do not have a __pat h__, these can and must be
ignored.

* Onefile: On Linux, the sys. ar gv[0] was not the original file as advertised.

« Standalone: Do not consider . mesh and . f r ag files as DLIs in the Qt bindings when including the
gml support. This was causing errors on Linux, but was generally wasteful.

* Fix, project options could be injected twice, which could lead to errors with options that were only
allowed once, e.g. - -l i nux-onefil e-icon.

* Windows: When updating the resources in created binaries, treat all kinds of OSError with
information output.

» Onefile: Remove onefile target binary path at startup as well, so it cannot cause confusion after error
exit.

* Onefile: In case of error exit from Appl nage, preserve its outputs and attempt to detect if there was a
locking issue.

« Standalone: Scan package folders on Linux for DLLs too. This is necessary to properly handle PyQt 5
in case of Qtinstalled in the system as well.

 Standalone: On Linux, standard QML files were not found.

« Standalone: Enforce C locale when detecting DLLs on Linux, otherwise whitelisting messages didn't
work properly on newer Linux.

» Standalone: Added support for t zdat a package data files.
« Standalone: Added support for exchangel i b.
» Python3.9: Fix, type subscripts could cause optimization errors.

« Ul: Project options didn't properly handle quoting of arguments, these are normally removed by the
shell.

* Linux: The default icon for Python in the system is now found with more version specific names and
should work on more systems.

» Standalone: Do not include | i bst dc++ as it should come from the system rather.

New Features

» Added plugin anti - bl oat plugin, intended to fight bloat. For now it can make including certain

modules an error, a warning, or force | mport Error, e.g.
- - noi ncl ude- set upt ool s- node=nof ol | ow is very much recommended to limit compilation
size.

» The pkg-r esour ces builtin now covers net adat a and importlib_metadata packages for compile
time version resolution as well.

» Added support for PySi de2 on Python version before 3.6, because the patched code needs no
workarounds. Fixed in 0.6.14.3 already.

» Windows: Convert images to icon files on the fly. So now you can specify multiple PNG files, and
Nuitka will create an icon out of that automatically.

» macOS: Automatically download ccache binary if not present.
* Plugins: New interface to query the main script path. This allows plugins to look at its directory.
« Ul: Output the versions of Nuitka and Python during compilation.

» Ul: Added option to control static linking. So far this had been enabled only automatically for cases
where we are certain, but this allows to force enable or disable it. Now an info is given, if Nuitka
thinks it might be possible to enable it, but doesn't do it automatically.

» Ul: Added - - no- onefi | e to disable - - onefi | e from project options.
Optimization
* Much enhanced GIL interaction with Python3.9 giving a big speed boost and better threading
behaviour.

» Faster conversion of iterables to | i st , if size can be know, allocation ahead saves a lot of effort.

» Added support for Generi cAl i as objects as compile time constants.

Organisational

» Enhanced GitHub issue raising instructions.
* Apply r st f nt to all documentation and make it part of the commit hook.

» Make sure to check Scons files as well. This would have caught the code used to disable cl cache
temporarily.

» Do not mention Travis in PR template anymore, we have stopped using it.

» Updated requirements to latest versions.

» Bump requirements for development to 3.7 at least, toosl like black do not work with 3.6 anymore.

« Started work on Nuitka Python, a CPython fork intended for enhanced performance and standalone
support with Nuitka.

Cleanups

» Determine system prefix without virtualenv outside of Scons, such that plugins can share the code.
There was duplication with the nunpy plugin, and this will only be more complete using all
approaches. This also removes a lot of noise from the scons file moving it to shared code.

» The Qt plugins now collect QML files with cleaner code.

Tests

* Nicer error message if a wrong search mode is given.

» Windows: Added timeout for determining run time traces with dependency walker, sometimes this
hangs.

» Added test to cover the zip importer.

» Making use of project options in onefile tests, making it easier to execute them manually.

Summary

For Windows, it's now easier than ever to create an icon for your deployment, because you can use PNG
files, and need not produce ICO files anymore, with Nuitka doing that for you.

The onefile for Linux had some more or less severe problems that got addressed, esp. also when it came
to QML applications with PySide.

On the side, we are preparing to greatly improve the caching of Nuitka, starting with retaining modules that
were demoted to bytecode. There are changes in this release, to support that, but it's not yet complete. We
expect that scalability will then be possible to improve even further.

Generally this is mostly a maintenance release, which outside of the threading performance improvement
has very little to offer for faster execution, but that actually does a lot. Unfortunately right now it's limited to
3.9, but some of the newer Python's will also be supported in later releases.

Nuitka Release 0.6.14

This release has few, but important bug fixes. The main focus was on expanding standalone support, esp.
for PySide2, but also and in general with plugins added that workaround pkg resources usage for
version information.

Also an important new features was added, e.g. the project configuration in the main file should prove to
be very useful.

Bug Fixes

» Compatibility: Fix, modules that failed to import, should be retried on next import.

So far we only ever executed the module body once, but that is not how it's supposed to be. Instead,
only if it's in sys. nmodul es that should happen, which is the case after successful import.

» Compatibility: Fix, constant Fal se values in right hand side of and/or conditions were generating
wrong code if the left side was of known bool shape too.

« Standalone: Fix, add st yl es Qt plugins to list of sensible plugins.
Otherwise no mouse hover events are generated on some platforms.

» Compatibility: Fix, relative f r omimports beyond level 1 were not loadingg modules from packages if
necessary. Fixed in 0.6.13.3 already.

« Standalone: The cr ypt o DLL check for Qt bindings was wrong. Fixed in 0.6.13.2 already.
« Standalone: Added experimental support for PySide6, but for good results, 6.1 will be needed.
« Standalone: Added support for newer matplotlib. Fixed in 0.6.12.1 already.

« Standalone: Reverted changes related to pkg_r esour ces that were causing regressions. Fixed in
0.6.13.1 already.

« Standalone: Adding missing implicit dependency for cyt ool z package. Fixed in 0.6.13.1 already.

« Standalone: Matching for package names to not suggest recompile for was broken and didn't match.
Fixed in 0.6.13.1 already.

New Features

» Added support for project options.

When found in the filename provided, Nuitka will inject options to the commandline, such that it
becomes possible to do a complex project with only using

pyt hon -m nui tka fil enane. py

Conpil ati on node, support OS specific.

nuitka-project-if: {OS} in ("Wndows", "Linux"):

nui t ka-project: --onefile

nuitka-project-if: {OS} not in ("Wndows", "Linux"):
nui t ka- proj ect: --standal one

The PySi de2 plugin covers qt-plugins

nui tka- project: --enable-plugi n=pysi de2

nui tka-project: --include-qt-plugins=sensible, qm

The pkg-resources plugin is not yet automatic
nui tka- proj ect: --enabl e-pl ugi n=pkg-resources

Nuitka Commercial only features follow

Protect the constants from bei ng readabl e.

nui t ka- proj ect: --enabl e-plugi n=dat a- hi di ng

Include datafiles for @ into the binary directory.
nui tka- project: --enable-plugin=datafile-inclusion
nui tka-project: --qt-datadir={MAl N DI RECTORY}

nuitka-project: --qgt-datafile-pattern=*.js

nuitka-project: --qgt-datafil e-pattern=*.qm

nuitka-project: --gt-datafile-pattern=*.svg

nuitka-project: --gt-datafile-pattern=*.png

Refer to the User Manual for a table of directives and the variables allowed to be used.
» Added option to include whole data directory structures in standalone.

The new option - -i ncl ude- dat a-di r was added and is mostly required for onefile mode, but
recommended for standalone too.

» Added pkg- r esour ces plugin.

This one can resolve code like this at compile time without any need for pip metadata to be present or
used.

pkg resources. get _distribution("nodul e nane"). version
pkg resources. get _distribution("nodul e nane"). parsed_version

* Standalone: Also process early imports in optimization.

Otherwise plugins cannot work on standard library modules. This makes it possible to handle them as
well.

Optimization

* Faster binary operations.

Applying lessons learnt during the enhancements for in-place operations that initially gave worse
results than some manual code, we apply the same tricks for all binary operations, which speeds
them up by significant margins, e.g. 30% for float addition, 25% for Python int addition, and still 6%
for Python int addition.

» More direct optimization of unary operations on constant value.

Without this, - 1 was not directly a constant value, but had to go through the unary - operation, which
it still does, but now it's done at tree building time.

» More direct optimization for not in branches.

Invertible comparisons, i.e. i s/i s not andi n/not i n do not have do be done during optimization.
This mainly avoids noise during optimization from such unimportant steps.

» More direct optimization for constant slices.

These are used in Python3 for all subscripts, e.g. a[1: 2] will use slice(1, 2) effectively. For
Python2 they are used less often, but still. This also avoids a lot of noise during optimization, mostly
on Python3

 Scons: Avoid writing database to disk entirely.

This saves a bit of disk churn and makes it unnecessary to specify the location such that it doesn't
collide between Python versions.

 For optimization passes, use previous max total as minimum for next pass. That will usually be a
more accurate result, rather than starting from 1 again. Part of 0.6.13.1 already.

» Enhancements to the branch merging improve the scalability of Nuitka somewhat, although the
merging itself is still not very scalable, there are some modules that are very slow to optimize still.

» Use or der set if available over the inline copy for Or der edSet which is much faster and improves
Nuitka compile times.

» Make pkguti | a hard import too, this is in preparation of more optimization for its functions.

Organisational

» Upstream patches for PySi de6 have been contributed and merged into the development branch
dev. Full support should be available once this is released as part of 6.1 which is waiting for Qt 6.1
naturally.

« Patches for PySi de2 are available to commercial customers, see PySide2 support page.

» Formatted all documents with r st f mt and made that part of the commit hook for Nuitka. It now
works for all documents we have.

» Updated inline copy of t qdmto 4.59.0 which ought to address spurious errors given.

» User Manual: Remove --show progress from the tutoral. The default progress bar is then
disabled, and is actually much nicer to use.

 Developer Manual: Added description of how context managers should be named.
* Cleanup language for some warnings and outputs.

It was still using obsolete "recursion" language rather than talking about "following imports", which is
the new one.

https://nuitka.net/pages/pyside2.html

Cleanups

» Remove dead code related to constants marshal, the data composer has replaced this.

« Avoid internal API usage for loading extension modules on Linux, there is a function in sys module to
get the Id flags.

Tests

* Fix, the onl y mode wasn't working properly.

» Use new project options feature for specific options in basic tests allowing to remove them from the
test runner.

Summary

For PySide2 things became more perfect, but it takes upstream patches unfortunately such that only
PySide6.1 will be working out of the box outside of the commercial offering. We will also attempt to provide
workarounds, but there are some things that cannot be done that way.

This release added some more scalability to the optimization process, however there will be more work
needed to make efficient branch merges.

For onefile, a feature to include whole directories had been missing, and could not easily be achieved with
the existing options. This further rounds this up, now what's considered missing is compression and
macOS support, both of which should be coming in a future release.

For the performance side of things, the binary operator work can actually yield pretty good gains, with
double digit improvements, but this covers only so much. Much more C types and better type tracing would
be needed, but there was no progress on this front. Future releases will have to revisit the type tracing to
make sure, we know more about loop variables, etc. so we can achieve the near C speed we are looking
for, at least in the field of i nt performance.

This release has largely been driven by the Nuitka Commercial offering and needs for compatibility with
more code, which is of course always a good thing.

Nuitka Release 0.6.13

This release follows up with yet again massive improvement in many ways with lots of bug fixes and new
features.

Bug Fixes

» Windows: Icon group entries were not still not working properly in some cases, leading to no icon or
too small icons being displayed. Fixed in 0.6.12.2 already.

» Windows: Icons and version information were copied from the standalone executable to the onefile
executable, but that failed due to race situations, sometimes reproducible. Instead we now apply
things to both independently. Fixed in 0.6.12.2 already.

« Standalone: Fixup scanning for DLLs with | dconfig on Linux and newer versions making
unexpected outputs. Fixed in 0.6.12.2 already.

* Ul: When there is no standard input provided, prompts were crashing with EOFErr or when
- -assune-yes-for - downl oads is not given, change that to defaulting to " no" instead. Fixed in
0.6.12.2 already.

» Windows: Detect empty strings for company name, product name, product and file versions rather
than crashing on them later. Them being empty rather than not there can cause a lot of issues in
other places. Fixed in 0.6.12.2 already.

file:///doc/commercial.html

» Scons: Pass on exceptions during execution in worker threads and abort compilation immediately.
Fixed in 0.6.12.2 already.

» Python3.9: Still not fully compatible with typing subclasses, the enhanced check is now closely
matching the CPython code. Fixed in 0.6.12.2 already.

* Linux: Nicer error message for missing | i bf use requirement.

» Compatibility: Lookups on dictionaries with None value giving a KeyErr or exception, but with no
value, which is not what CPython does.

» Python3.9: Fix, future annotations were crashing in debug mode. Fixed in 0.6.12.3 already.
« Standalone: Corrections to the gl f wwere made. Fixed in 0.6.12.3 already.

« Standalone: Added missing implicit dependency for py. t est . Fixed in 0.6.12.3 already.

« Standalone: Adding missing implicit dependency for pyr eadst at .

» Windows: Added workaround for common clcache locking problems. Since we use it only inside a
single Scons process, we can avoiding using Windows mutexes, and use a process level lock
instead.

* Plugins: Fix plugin for support for event | et . Fixed in 0.6.12.3 already.
« Standalone: Added support for latest zng on Windows.
 Scons: the - - qui et flag was not fully honored yet, with Scons still making a few outputs.

« Standalone: Added support for alternative DLL name for newer PyGIK3 on Windows. Fixed in
0.6.12.4 already.

* Plugins: Fix plugin for support for gevent . Fixed in 0.6.12.4 already.
« Standalone: Added yet another missing implicit dependency for pandas.
* Plugins: Fix, the gt - pl ugi ns plugin could stumble over . nesh files.

» Windows: Fix, dependency walker wasn't properly working with unicode %°ATHY which could e.g.
happen with a virtualenv in a home directory that requires them.

» Python3: Fixed a few Python debug mode warnings about unclosed files that have sneaked into the
codebase.

New Features

» Added new options - - Wi ndows- f or ce- st dout - spec and - - wi nhdows- f or ce- st derr-spec to
force output to files. The paths provided at compile time can resolve symbolic paths, and are
intended to e.g. place these files near the executable. Check the User Manual for a table of the
currently supported values. At this time, the feature is limited to Windows, where the need arose first,
but it will be ported to other supported OSes eventually. These are most useful for programs run as
--w ndows- di sabl e- consol e or with - - enabl e- pl ugi n=wi ndows- ser vi ce.

* Windows: Added option --w ndows-onefile-tenpdir-spec (since renamed to
--onefile-tenpdir-spec) to provide the temporary directory used with
--wi ndows- onefil e-tenpdi r in onefile mode, you can now select your own pattern, and e.g.
hardcode a base directory of your choice rather than %' EMP.

» Added experimental support for PySi de2 with workarounds for compiled methods not being
accepted by its core. There are known issues with Py Si de2 still, but it's working fine for some people
now. Upstream patches will have to be created to remove the need for workarounds and full support.

Optimization

» Use binary operation code for their in-place variants too, giving substantial performance
improvements in all cases that were not dealt with manually already, but were covered in standard
binary operations. Until now only some string, some float operations were caught sped up, most often
due to findings of Nuitka being terribly slower, e.g. not reusing string memory for inplace
concatenation, but now all operations have code that avoids a generic code path, that is also very
slow on Windows due calling to using the embedded Python via API being slow.

» For mixed type operations, there was only one direction provided, which caused fallbacks to slower
forms, e.g. with | ong and f | oat values leading to inconsistent results, suchthata - 1andl - a
being accelerated or not.

» Added C boolean optimization for a few operations that didn't have it, as these allow to avoid doing
full computation of what the object result would have to do. This is not exhausted fully yet.

» Python3: Faster +/- /+=/- = binary and in-place operations with i nt values providing specialized code
helpers that are much faster, esp. in cases where no new storage is allocated for in-place results and
where not a lot of digits are involved.

» Python2: The Python3 i nt code is the Python2 | ong type and benefits from the optimization of
+/- [+=/- = code as well, but of course its use is relatively rare.

e Improved __future__ imports to become hard imports, so more efficient code is generated for
them.

» Counting of instances had a run time impact by providing a __del __ that was still needed to be
executed and limits garbage collection on types with older Python versions.

« Ul: Avoid loading t gdm module before it's actually used if at all (it may get disabled by the user),
speeding up the start of Nuitka.

» Make sure to optimize internal helpers only once and immediately, avoiding extra global passes that
were slowing down Python level compilation by of large programs by a lot.

» Make sure to recognize the case where a module optimization can provide no immediate change, but
only after a next run, avoiding extra global passes originating from these, that were slowing down
compilation of large programs by a lot. Together with the other change, this can improve scalability by
a lot.

 Plugins: Remove implicit dependencies for pkg_r esources. extern and use aliases instead.
Using one of the packages, was causing all that might be used, to be considered as used, with some
being relatively large. This was kind of a mistake in how we supported this so far.

* Plugins: Revamped the event | et plugin, include needed DNS modules as bytecode rather than as
source code, scanning them with pkguti | rather than filesystem, with much cleaner code in the
plugin. The plugin is also now enabled by default.

Organisational

» Removed support for pef i | e dependency walker choice and inline copy of the code. It was never as
good giving incomplete results, and after later improvements, slower, and therefore has lost the
original benefit over using Dependency Walker that is faster and more correct.

» Added example for onefile on Windows with the version information and with the temporary directory
mode.

» Describe difference in file access with onefile on Windows, where sys.argv[0] and
os. path.dirnanme(__file__) will be different things.

» Added inline copy of t gdmto make sure it's available for progress bar output for 2.7 or higher.
Recommend having it in the Debian package.

» Added inline copy of col or ana for use on Windows, where on some terminals it will give better
results with the progress bar.

« Stop using old PyLint for Python2, while it would be nice to catch errors, the burden of false alarms
seems to high now.

» Ul: Added even more checks on options that make no sense, made sure to do this only after a
possible restart in proper environment, so warnings are not duplicated.

* For Linux onefile, keep appimage outputs in case of an error, that should help debugging it in case of
issues.

« Ul: Added traces for plugin provided implicit dependencies leading to inclusions.

» Added inline copy of zst d C code for use in decompression for the Windows onefile bootstrap, not
yet used though.

» Added checks to options that accept package names for obvious mistakes, such that
--include-package-data --mi ngwb4 will not swallow an option, as that is clearly not a
package name, that would hide that option, while also not having any intended effect.

» Added ignore list for decision to recompile extension modules with available source too. For now,
Nuitka will not propose to recompile Cyt hon modules that are very likely not used by the program
anyway, and also not for | xm until it's clear if there's any benefit in that. More will be added in the
future, this is mostly for cases, where Cython causes incompatibilities.

» Added support for using abstract base classes in plugins. These are not considered for loading, and
allow nicer implementation of shared code, e.g. between PyQ 5 and Py Si de2 plugins, but allow e.g.
to enforce the provision of certain overloads.

» User Manual: Remove the instruction to install cl cache, since it's an inline copy, this makes no
sense anymore and that was obsolete.

» Updated PyLint to latest versions, and our requirements in general.

Cleanups

» Started removal of PyLint annotations used for old Python2 only. This will be a continuous action to
remove these.

« Jinja2 based static code generation for operations was cleaned up, to avoid code for static
mismatches in the result C, avoiding language constructs like i f (1 && 0) with sometimes larger
branches, replacing it with Jinja2 branches of the {% i f ... % form.

« Jinja2 based Python2 i nt code was pioniering the use of macros, but this was expanded to allow
kinds of types for binary operations, allow their reuse for in-place operation, with these macros
making returns via goto exits rather than return statements in a function. Landing pads for these exits
can then assign target values for in-place different from what those for binary operation result return
do.

» Changed the interfacing of plugins with DLL dependency detection, cleaning up the interactions
considerably with more unified code, and faster executing due to cached plugin decisons.

* Integrate manually provided slot function for uni code and str into the standard static code
generation. Previously parts were generated and parts could be generated, but also provided with
manual code. The later is now all gone.

» Use a less verbose progress bar format with less useless infos, making it less likely to overflow.

» Cleanup how payload data is accessed in Windows onefile bootstrap, preparing the addition of
decompression, doing the reading from the file in only one dedicated function.

» When Jinja2 generated exceptions in the static code, it is now done via proper Jinja2 macros rather
than Python code, and these now avoid useless Python version branches where possible, e.g.
because a type like bytes is already Python version specific, with the goal to get rid of
PyErr _For mat usage in our generated static code. That goal is future work though.

» Move safe strings helpers (cannot overflow) to a dedicated file, and remove the partial duplication on
the Windows onefile bootstrap code.

 The Jinja2 static code generation was enhanced to track the usage of labels used as goto targets, so
that error exits, and value typed exits from operations code no longer emitted when not used, and
therefore labels that are not used are not present.

* For implicit dependencies, the parsing of the . pyi file of a module no longer emits a dependency on
the module itself. Also from plugins, these are now filtered away.

Tests

« Detect if onefile mode has required downloads and if there is user consent, otherwise skip onefile
tests in the test runner.

» Need to also allow accesses to files via short paths on Windows if these are allowed long paths.
 The standalone tests on Windows didn't actually take run time traces and therefore were ineffective.
» Added standalone test for gl f wcoverage.

 Construct based tests for in-place operations are now using a value for the first time, and then a
couple more times, allowing for real in-place usage, so we are sure we measure correctly if that's
happening.

Summary

Where the big change of the last release were optimization changes to reduce the global passes, this
release addresses remaining causes for extra passes, that could cause these to still happen. That makes
sure, Nuitka scalability is very much enhanced in this field again.

The new features for forced outputs are at this time Windows only and make a huge difference when it
comes to providing a way to debug Windows Services or programs in general without a console, i.e. a GUI
program. These will need even more specifiers, e.g. to cover program directory, rather than exe filename
only, but it's a very good start.

On the tooling side, not a lot has happened, with the clcache fix, it seems that locking issues on Windows
are gone.

The plugin changes from previous releases had left a few of them in a state where they were not working,
but this should be restored. Interaction with the plugins is being refined constantly, and this releases
improved again on their interfaces. It will be a while until this becomes stable.

Adding support for PySide2 is a headline feature actually, but not as perfect as we are used to in other
fields. More work will be needed, also in part with upstream changes, to get this to be fully supported.

For the performance side of things, the in-place work and the binary operations work has taken proof of
concept stuff done for Python2 and applied it more universally to Python3. Until we cover all long
operations, esp. * seems extremely important and is lacking, this cannot be considered complete, but it
gives amazing speedups in some cases now.

Future releases will revisit the type tracing to make sure, we know more about loop variables, to apply
specific code helpers more often, so we can achieve the near C speed we are looking for in the field of
i nt performance.

Nuitka Release 0.6.12

This release is yet again a massive improvement in many ways with lots of bug fixes and new features.

Bug Fixes

» Windows: Icon group entries were not working properly in some cases, leading to no icon or too small
icons being displayed.

« Standalone: The PyQt implicit dependencies were broken. Fixed in 0.6.11.1 already.
» Standalone: The datafile collector plugin was broken. Fixed in 0.6.11.3 already.

« Standalone: Added support for newer forms of mat pl ot | i b which need a different file layout and
config file format. Fixed in 0.6.11.1 already.

* Plugins: If there was an error during loading of the module or plugin, it could still be attempted for
use. Fixed in 0.6.11.1 already.

« Disable notes given by gcc, these were treated as errors. Fixed in 0.6.11.1 already.
» Windows: Fix, spaces in gcc installation paths were not working. Partially fixed in 0.6.11.4 already.
* Linux: Fix, missing onefile icon error message was not complete. Fixed in 0.6.11.4 already.

« Standalone: Workaround zng problem on Windows by duplicating a DLL in both expected places.
Fixed in 0.6.11.4 already.

» Standalone: The di I | - conpat plugin wasn't working anymore. Fixed in 0.6.11.4 already.

» Windows: Fix mistaken usage of si zeof for wide character buffers. This caused Windows onefile
mode in temporary directory. Fixed in 0.6.11.4 already.

» Windows: Fix, checking subfolder natured crashed with different drives on Windows. Fixed in
0.6.11.4 already.

» Windows: Fix, usage from MSVC prompt was no longer working, detect used SDK properly. Fixed in
0.6.11.4 already.

» Windows: Fix, old clcache installation uses pth files that prevented our inline copy from working,
workaround was added.

» Windows: Also specify stack size to be used when compiling with gcc or clang.
* Fix, claim of Python 3.9 support also in PyPl metadata was missing. Fixed in 0.6.11.5 already.
» Python3.9: Subscripting t ype for annotations wasn't yet implemented.

» Python3.9: Better matching of types for metaclass selection, generic aliases were not yet working,
breaking some forms of type annotations in base classes.

» Windows: Allow selecting - - nsvc- ver si on when a MSVC prompt is currently activated.

» Windows: Do not fallback to using gcc when - - nsvc- ver si on has been specified. Instead it's an
error if that fails to work.

» Python3.6+: Added support for del () statements, these have no effect, but were crashing Nuitka.

del a # standard form

del a, b # sane as del a; del b

del (a, b) # braces are allowed

del () # allowed for consistency, but wasn't worKking.
 Standalone: Added support for gl f wthrough a dedicated plugin.

* macOS: Added support for Python3 from system and CPython official download for latest OS version.

New Features

« Ul: With t gqdminstalled alongside Nuitka, experimental progress bars are enabled. Do not use ™
--show-progress’ or - - ver bose as these might have to disable it.

* Plugins: Added APIs for final processing of the result and onefile post processing.

» Onefile: On Windows, the Python process terminates with Keyboar dl nt err upt when the user
sends CTRL-break, CTRL-C, shutdown or logoff signals.

» Onefile: On Windows, in case of the launching process terminating unexpectedly, e.g. due to
Taskmanager killing it, or a 0s. si gki | | resulting in that, the Python process still terminates with
Keyboar dl nterrupt.

» Windows: Now can select icons by index from files with multiple icons.
Optimization

» Avoid global passes caused by module specific optimization. The variable completeness os now
traced per module and function scope, allowing a sooner usage. Unused temporary variables and
closure variables are remove immediately. Recognizing possible auto releases of parameter
variables is also instantly.

This should bring down current passes from 5-6 global passes to only 2 global passes in the normal
case, reducing frontend compile times in some cases massively.

« Better unary node handling. Dedicated nodes per operation allow for more compact memory usage
and faster optimization.

» Detect flow control and value escape for the repr of node based on type shape.

» Enhanced optimization of caught exception references, these never raise or have escapes of control
flow.

» Exception matching operations are more accurately annotated, and may be recognized to not raise in
more cases.

» Added optimization for the i ssubcl ass built-in.

» Removed scons caching as used on Windows entirely. We should either be using cl cache or
ccache automatically now.

» Make sure to use __slots__ for all node classes. In some cases, mixins were preventing the
feature from being it. We now enforce their correct specification of slots, which makes sure we can't
miss it anymore. This should again gain more speed and save memory at frontend compile time.

» Scons: Enhanced gcc version detection with improved caching behavior, this avoids querying the
same gcc binary twice.

Organisational

» The description of Nuitka on PyPI was absent for a while. Added back by adding long description of
the project derived from the README file.

» Avoid terms bl acklist, whilelist and slave in the Nuitka code preferring bl ockli st,
i gnorelist and chil d instead, which are actually more clear anyway. We follow a general trend
to do this.

» Configured the inline copy of Scons so pylance has an easier time to find it.

» The git commit hook had stopped applying diffs with newest git, improved that.
» Updated description for adding new CPython test suite.

* Using https URLs for downloading dependency walker, for it to be more secure.

» The commit hook can now be disabled, it's in the Developer Manual how to do it.

Cleanups

» Moved unary operations to their own module, the operators module was getting too crowded.

» The scons files for Python C backend and Windows onefile got cleaned up some more and moved
more common code to shared modules.

» When calling external tools, make sure to provide null input where possible.

« Unified calling i nstal | _nane_t ool into a single method for adding rpath and name changes both
at the same time.

« Unified how tools like r eadel f, | dconfi g etc. are called and error exits and outputs checked to
make sure we don't miss anything as easily.

Tests

» Adapted for some openSUSE specific path usages in standalone tests.

* Basic tests for onefile operation and with termination signal sent were added.

Summary

The big changes in this release are the optimization changes to reduce the global passes and the memory
savings from other optimization. These should again make Nuitka more scalable with large projects, but
there definitely is work remaining.

Adding nice stopping behaviour for the Onefile mode on Windows is seemingly a first, and it wasn't easy,
but it will make it more reliable to users.

Also tooling of gcc and MSVC on Windows got a lot more robust, covering more cases, and macOS
support has been renewed and should be a lot better now.

The progress bar is a nice touch and improves the overall feel of the compilation process, but obviously we
need to aim at getting faster overall still. For projects using large dependencies, e.g. Pandas the
compilation is still far too slow and that will need work on caching frontend results, and better optimization
and C code generation for the backend.

Nuitka Release 0.6.11

This release is a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

* Fix, the . pyi file parser didn't handle relative imports. Fixed in 0.6.10.1 already.

» Windows: Fix, multiprocessing plugin was not working reliable following of imports from the additional
entry point. Fixed in 0.6.10.1 already.

* Pipenv: Workaround parsing issue with our set up. py to allow installation from GitHub. Fixed in
0.6.10.1 already.

» Merging of branches in optimization could give nondeterministic results leading to more iterations
than necessary. Fixed in 0.6.10.1 already.

» Windows: Avoid profile powershell when attempting to resolve symlinks. Fixed in 0.6.10.1 already.

» Windows: Fix, always check for stdin, stdout, and stderr presence. This was so far restricted to gui
mode applications, but it seems to be necessary in other situations too. Fixed in 0.6.10.1 already.

» Python2: Fix, --trace- executi on was not working for standalone mode but can be useful for
debugging. Fixed in 0.6.10.1 already.

» Windows: Onefile could run into path length limits. Fixed in 0.6.10.3 already.
* Windows: The winlib gcc download link became broken and was updated. Fixed in 0.6.10.3 already.

* Plugins: The "__main__" module was not triggering all plugin hooks, but it needs to for completeness.

« Standalone: Fix, symlinked Python installations on Windows were not working, with dependency
walker being unable to look into these. Fixed in 0.6.10.4 already.

« Standalone: Fix support for numpy on Windows and macQOS, the plugin failed to copy important
DLLs. Fixed in 0.6.10.4 already.

» Python3: For versions before 3.7, the symlink resolution also needs to be done, but wasn't handling
the bytes output yet. Fixed in 0.6.10.4 already.

* Fix, folder based inclusion would both pick up namespace folders and modules of the same name,
crashing the compilation due to conflicts. Fixed in 0.6.10.4 already.

* Fix, the - - | t 0 wasn't used for clang on non-Windows yet.

* Fix, the order of locals dict releases wasn't enforced, which could lead to differences that break
caching of C files potentially. Fixed in 0.6.10.5 already.

* Fix, hash nodes didn't consider if their argument was raising, even if the type of the argument was
st r and therefore the operation should not. Fixed in 0.6.10.5 already.

* Fix, need to copy type shape and escape description for the replacement inverted comparisons when
used with not , otherwise the compilation can crash as these are expected to be present at all times.
Fixed in 0.6.10.5 already.

* Fix, some complex constant values could be confused, e.g. - 0j and 0j . These corner cases were
not properly considered in the constant loading code, only for f | oat so far.

« Standalone: Fix, bytecode only standard library modules were not working. This is at least used with
Fedora 33.

* Linux: Fix, extension modules compiled with - - | t o were not working.
» Windows: Retry if updating resources fails due to Virus checkers keeping files locked.

* Plugins: Pre- and postload code of modules should not be allowed to cause | mport Err or, as these
will be invisible to the other parts of optimization, instead make them unraisable error traces.

« Standalone: Adding missing import for SciPy 1.6 support.

» Windows: Fix, only export required symbols when using MinGW64 in module mode.

New Features

» Python3.9: Added official support for this version.

 Onefile: Added command line options to include data files. These are - - i ncl ude- package- dat a
which will copy all non-DLLs and non-Python files of package names matching the pattern given. And
--include-data-fil e takes source and relative target file paths and copies them. For onefile this
is the only way to include files, for standalone mode they are mostly a convenience function.

* Onefile: Added mode where the file is unpacked to a temporary folder before running instead of doing
it to appdata.

* Onefile: Added linux specific options - - | i nux- onefi |l e-i con to allow provision of an icon to use
in onefile mode on Linux, so far this was only available as the hard coded path to a Python icon,
which also didn't exist on all platforms.

» Ul: Major logging cleanup. Everything is now using our tracing classes and even error exits go
through there and are therefore colored if possible.

* Plugins: Make it easier to integrate commercial plugins, now only an environment variable needs to
point to them.

» Ul: Enhanced option parsing gives notes. This complains about options that conflict or that are
implied in others. Trying to catch more usage errors sooner.

* Plugins: Ignore exceptions in buggy plugin code, only warn about them unless in debug mode, where
they still crash Nuitka.

» Scons: More complete scons report files, includes list values as well and more modes used.
» Windows: The ¢l cache is now included and no longer used from the system.
* Qutput for cl cache and ccache results got improved.

» Enhanced support for cl ang, on Windows if present near a gcc. exe like it is the case for some
winlibs downloads, it will be used. To use it provide - - m ngwé4 - -cl ang both. Without the first
one, it will mean cl angcl . exe which uses the MSVC compiler as a host.

Optimization

» Some modules had very slow load times, e.qg. if they used many list objects due to linear searches for
memory deduplication of objects. We now have dictionaries of practically all constant objects loaded,
making these more instant.

» Use less memory at compile time due using __sl ot s__ for all node types, finally figured out, how to
achieve this with multiple inheritance.

» Use hedley for compiler macros like unl i kel y as they know best how to do these.
* Special case the merging of 2 branches avoiding generic code and being much faster.

» Hard imports have better code generated, and are being optimized into for the few standard library
modules and builtin modules we handle, they also how annotate the type shape to be module.

* No longer annotate hard module import attribute lookups as control flow escapes. Not present
attributes are changed into static raises. Trust for values is configured for a few values, and
experimental.

» Avoid preloaded packages for modules that have no side effects and are in the standard library,
typically . pt h files will use e.g. os but that's not needed to be preserved.

» Use i nchi n for including binary data through inline assembly of the C compiler. This covers many
more platforms than our previous linker option hacks, and the fallback to generated C code. In fact
everything but Windows uses this now.

Organisational

» Windows: For Scons we now require a Python 3.5 or higher to be installed to use it.

» Windows: Removed support for gcc older than version 8. This specifically affects CondaCC and older
MinGW64 installations. Since Nuitka can now download the MinGW64 10, there is no point in having
these and they cause issues.

* We took over the maintenance of clcache as Nuitka/clcache which is not yet ready for public
consumption, but should become the new source of clache in the future.

* Include an inline copy of clcache in Nuitka and use it on Windows for MSVC and ClangCL.

* Removed compatibility older aliases of follow option, --recurse-* and require --foll ow*
options to be used instead.

« For pylint checking, the tool now supports a - - di f f mode where only the changed files get checked.
This is much faster and allows to do it more often before commit.

» Check the versions of isort and black when doing the auto-format to avoid using outdated versions.
» Handling missing pylint more gracefully when checking source code quality.

» Make sure to use the codespell tool with Python3 and make sure to error exit when spelling problems
were found, so we can use this in GitHub actions too.

* Removed Travis config, we now only use GitHub actions.
» Removed landscape config, it doesn't really exist anymore.
» Bumped all PyPI dependnecies to their latest versions.

« Recommend ccache on Debian, as we now consider the absence of ccache something to warn
about.

* Plugins: The DLLs asked for by plugins that are not found are no longer warned about.

» Allow our checker and format tools to run on outside of tree code. We are using that for
Nuitka/clcache.

» Added support for Fedora 33 and openSUSE 15.3, as well as Ubuntu Groovy.
» Windows: Check if Windows SDK is installed for MSVC and ClangCL.

» Windows: Enhanced wording in case no compiler was found. No longer tell people how to manually
install MinGW®64, that is no longer necessary and pyw n32 is not needed to detect MSVC, so it's not
installed if not found.

» Detect "embeddable Python" by missing include files, and reject it with proper error message.

» Added onefile and standalone as a use case to the manual and put also the DLL and data files
problems as typically issues.

Cleanups

 Avoid decimal and string comparisons for Python versions checks, these were lazy and are going to
break once 3.10 surfaces. In testing we now use tuples, in Nuitka core hexacimal values much like
CPython itself does.

« Stop using subnode child getters and setters, and instead only use subnode attributes. This was
gradually changed so far, but in this release all remaining uses have migrated. This should also make
the optimization stage go faster.

» Change node constructors to not use a decorator to resolve conflicts with builtin names, rather
handle these with manual call changes, the decorator only made it difficult to read and less
performant.

» Move safe string helpers to their own dedicated helper file, allowing for reuse in plugin code that
doesn't want to use all of Nuitka C helpers.

» Added utils code for inline copy imports, as we use that for quite a few things now.
* Further restructured the Scons files to use more common code.

* Plugins: The module name objects now reject many st r specific APIs that ought to not be used, and
the code got changed to use these instead, leading to cleaner and more correct usages.

» Using named tuples to specify included data files and entry points.

» Use pkguti | in plugins to scan for modules rather than listing directories.

Tests

» New option to display executed commands during comparisons.

» Added test suite for onefile testing.

Summary

This release has seen Python3.9 and Onefile both being completed. The later needs compression added
on Windows, but that can be added in a coming release, for now it's fully functional.

The focus clearly has been on massive cleanups, some of which will affect compile time performance.
There is relatively little new optimization otherwise.

The adoption of clcache enables a very fast caching, as it's now loaded directly into the Scons process,
avoiding a separate process fork.

Generally a lot of polishing has been applied with many cleanups lowering the technical debt. It will be
interesting to see where the hard module imports can lead us in terms of more optimization. Static
optimization of the Python version comparisons and checks is heeded to lower the amount of imports to be
processed.

Important fixes are also included, e.g. the constants loading performance was too slow in some cases. The
mul ti processi ng on Windows and nunpy plugins were regressed and finally everything ought to be
back to working fine.

Future work will have to aim at enhanced scalability. In some cases, Nuitka still takes too much time to
compile if projects like Pandas include virtually everything installed as an option for it to use.

Nuitka Release 0.6.10

This release comes with many new features, e.g. onefile support, as well as many new optimization and
bug fixes.

Bug Fixes

* Fix, was memory leaking arguments of all complex call helper functions. Fixed in 0.6.9.6 already.
* Plugins: Fix, the dill-compat code needs to follow APl change. Fixed in 0.6.9.7 already.

» Windows: Fixup for multiprocessing module and complex call helpers that could crash the program.
Fixed in 0.6.9.7 already.

* Fix, the frame caching could leak memory when using caching for functions and generators used in
multiple threads.

» Python3: Fix, importing an extension module below a compiled module was not possible in
accelerated mode.

» Python3: Fix, keyword arguments for open built-in were not fully compatible.

* Fix, the scons python check should also not accept directories, otherwise strange misleading error
will occur later.

* Windows: When Python is installed through a symbolic link, MinGW64 and Scons were having
issues, added a workaround to resolve it even on Python2.

» Compatibility: Added support for co_f r eevar s in code objects, e.g. newer matplotlib needs this.
« Standalone: Add needed data files for gooey. Fixed in 0.6.9.4 already.

 Scons: Fix, was not respecting - - qui et option when running Scons. Fixed in 0.6.9.3 already.

* Scons: Fix, wasn't automatically detecting Scons from promised paths. Fixed in 0.6.9.2 already.

* Scons: Fix, the clcache output parsing wasn't robust enough. Fixed in 0.6.9.1 already.

» Python3.8: Ignore all non-strings provided in doc-string fashion, they are not to be considered.

* Fix,getattr,setattr and hasattr could not be used in finally clauses anymore. Fixed in 0.6.9.1
already.

* Windows: For Python3 enhanced compatibility for Windows no console mode, they need a
sys. stdi norelse e.g. i nput will not be compatible and raise Runt i meErr or .

New Features

» Added experimental support for Python 3.9, in such a way that the CPython3.8 test suite passes now,
the 3.9 suite needs investigation still, so we might be missing new features.

» Added experimental support for Onefile mode with - - onefi | e that uses Appl nage on Linux and
our own bootstrap binary on Windows. Other platforms are not supported at this time. With this, the
standalone folder is packed into a single binary. The Windows variant currently doesn't yet do any
compression yet, but the Linux one does.

» Windows: Added downloading of ccache. exe, esp. as the other sources so far recommended were
not working properly after updates. This is taken from the official project and should be good.

» Windows: Added downloading of matching MinGW64 C compiler, if no other was found, or that was
has the wrong architecture, e.g. 32 bits where we need 64 bits.

* Windows: Added ability to copy icon resources from an existing binary with new option
--wi ndows-i con-from exe.

» Windows: Added ability to provide multiple icon files for use with different desktop resolutions with
new option - - wi ndows-i con-fromi co that got renamed to disambiguate from other icon options.

» Windows: Added support for requesting UAC admin right with new option - - wi ndows- uac- adni n.

* Windows: Added support for requesting "uiaccess" rights with yet another new option
- - Wi ndows- uac- ui access.

 Windows: Added ability to specify version info to the binary. New options
- - W ndows- conpany- nane, - -w ndows- pr oduct - nane, --wi ndows-fil e-version,
--w ndows- product - ver si on, and - - wi ndows-fi | e-descri pti on have been added. Some
of these have defaults.

» Enhanced support for using the Win32 compiler of MinGW®64, but it's not perfect yet and not
recommended.

» Windows: Added support for LTO mode for MSVC as well, this seems to allow more optimization.

* Plugins: The numpy plugin now handles matplotlib3 config files correctly.
Optimization

» Use less C variables in dictionary created, not one per key/value pair. This improved scalability of C
compilation.

» Use common code for module variable access, leading to more compact code and enhanced
scalability of C compilation.

» Use error exit during dictionary creation to release the dictionary, list, tuple, and set in case of an
error occurring while they are still under construction. That avoids releases of it in error exists,
reducing the generated code size by a lot. This improves scalability of C compilation for generating
these.

» Annotate no exception raise for local variables of classes with know dict shape, to avoid useless error
exits.

» Annotate no exception exit for stati cmet hod and cl assnet hod as they do not check their
arguments at all. This makes code generated for classes with these methods much more compact,
mainly improving their scalability in C compilation.

* In code generation, prefer bool over nui t ka_bool which allows to annotate exception result,
leading to more compact code. Also cleanup so that code generation always go through the C type
objects, rather than doing cases locally, adding a C type for bool .

» Use common code for C code handling const None return only, to cases where there is any
immutable constant value returned, avoid code generation for this common case. Currently mutable
constants are not handled, this may be added in the future.

» Annotate no exception for exception type checks in handlers for Python2 and no exception if the
value has exception type shape for Python3. The exception type shape was newly added. This
avoids useless exception handlers in most cases, where the provided exception is just a built-in
exception name.

» Improve speed of often used compile time methods on nodes representing constant values, by
making their implementation type specific to improve frontend compile time speed, we check e.g.
mutable and hashable a lot.

* Provide truth value for variable references, enhancing loop optimization and merge value tracing, to
also decide this correctly for values only read, and then changed through attribute, e.g. append on
lists. This allows many more static optimization.

» Use st ati cnet hod for methods in Nuitka nodes to achieve faster frontend compile times where
possible.

» Use dedicated helper code for calls with single argument, avoiding the need have a call site local C
array of size one, just to pass a pointer to it.

» Added handling of hash slot, to predict hashable keys for dictionary and sets.

» Share more slot provision for built-in type shapes from mixin classes, to get them more universally
provided, even for special types, where their consideration is unusual.

* Trace "user provided" flag only for constants where it really matters, i.e. for containers and generally
potentially large values, but not for every number or boolean value.

» Added lowering of byt earray constant values to byt es value iteration, while handling constant
values for this optimization with dedicated code for improved frontend compilation speed.

* The dict built-in now annotates the dictionary type shape of its result.

» The wrapping side-effects nhode now passes on the type shape of the wrapped value, allowing for
optimization of these too.

* Split sl i ce nodes into variants with 1, 2 or 3 arguments, to avoid the overhead of determining which
case we have, as well as to save a bit of memory, since these are more frequently used on Python3
for subscript operations. Also annotate their type shape, allowing more optimization.

« Faster dictionary lookups, esp. in cases where errors occur, because we were manually recreating a
KeyEr r or that is already provided by the dict implementation. This should also be faster, as it avoids
a CPython API call overhead on the DLL and they can provide a reference or not for the returned
value, simplifying using code.

» Faster dictionary containment checks, with our own dedicated helper, we can use code that won't
create an exception when an item is not present at all.

» Faster hash lookups with our own helper, separating cases where we want an exception for
non-hashable values or not. These should also be faster to call.

» Avoid acquiring thread state in exception handling that checks if a St opl t erati on occurred, to
improved speed on Python3, where is involves locking, but this needs to be applied way more often.

» Make sure checks to debug mode and full compatibility mode are done with the variables introduced,
to avoid losing performance due to calls for Nuitka compile time enhancements. This was so far only
done partially.

* Split constant references into two base classes, only one of them tracking if the value was provided
by the user. This saves compile time memory and avoids the overhead to check if sizes are
exceeded in cases they cannot possibly be so.

* The truth value of container creations is now statically known, because the empty container creation
is no longer a possibility for these nodes, allowing more optimization for them.

» Optimize the bool built-in with no arguments directory, allow to simplify the node for single argument
form to avoid checks if an argument was given.

» Added iteration handles for xr ange values, and make them faster to create by being tied to the node
type, avoiding shared types, instead using the mixin approach. This is in preparation to using them
for standard iterator tracing as well. So far they are only used for any and al | decision.

» Added detection if a iterator next can raise, using existing iterator checking which allows to remove
needless checks and exception traces. Adding a code variant for calls to next that cannot fail, while
tuning the code used for next and unpacking next, to use faster exception checking in the C code.
This will speed up unpacking performance for some forms of unpacking from known sizes.

» Make sure to use the fastest tuple API possible in all of Nuitka, many place e.g. used
PyTupl e_Si ze, and one was in a performance critical part, e.g. in code that used when compiled
functions as called as a method.

» Added optimized variant for _PyLi st _Ext end for slightly faster unpacking code.
» Added optimized variant for PyLi st _Append for faster list contractions code.

 Avoid using RenoveFi | eSpec and instead provide our own code for that task, slightly reducing file
size and avoiding to use the Shl api link library.

Tests

» Made reflected test use common cleanup of test folder, which is more robust against Windows
locking issues.

» Only output changed CPython output after the forced update of cached value was done, avoiding
duplicate or outdated outputs.

» Avoid complaining about exceptions for in-place operations in case they are lowered to non-inplace
operations and then raise unsupported, not worth the effort to retain original operator.

» Added generated test for subscript operations, also expanding coverage in generated tests by
making sure, conditional paths are both taken by varying the cond value.

» Use our own code helper to check if an object has an attribute, which is faster, because it avoids
creating exceptions in the first place, instead of removing them afterwards.

Cleanups

» Make sure that code generation always go through the C type objects rather than local el i f casing
of the type. This required cleaning up many of the methods and making code more abstract.

» Added base class for C types without reference counting, so they can share the code that ignores
their handling.

* Remove get Const ant for constant value nodes, use the more general
get Conpi | eTi neConst ant instead, and provide quick methods that test for empty tuple or dict, to
use for checking concrete values, e.g. with call operations.

« Unified container creation into always using a factory function, to be sure that existing container
creations are not empty.

 Stop using @al | edW t hBui | t i nAr gunent NanesDecor at or where possible, and instead make
explicit wrapping or use correct names. This was used to allow e.g. an argument named | i st to be
passed from built-in optimization, but that can be done in a cleaner fashion. Also aligned no attributes
and the argument names, there was inconsistency there.

» Name mangling was done differently for attribute names and normal names and with non-shared
code, and later than necessary, removing this as a step from variable closure taking after initial tree
build.

« As part of the icon changes, now handled in Python code, we stop using the r ¢ binary and handle all
resources ourselves, allowing to remove that code from the Scons side of things.

» Moved file comparison code of standalone mode into file utils function for use in plugins as well.

 Unified how path concatenation is done in Nuitka helper code, there were more or less complete
variants, this is making sure, the most capable form is used in all cases.

» Massive cleanup to our scons file, by moving out util code that only scons uses, hacks we apply to
speed up scons, and more to separate modules with dedicated interfaces.

» When using enuner at e we now provide start value of 1 where it is appropriate, e.g. when counting
source code lines, rather than adding count +1 on every usage, making code more readable.

Organisational

* Do not recommend Anaconda on Windows anymore, it seems barely possible to get anything
installed on it with a fresh download, due to the resolver literally working for days without finishing,
and then reporting conflicts, it would only we usable when starting with Miniconda, but that seems
less interesting to users, also gcc 5.2 is way too old these days.

» The commit hook should be reinstalled, since it got improved and adapted for newer git versions.
» Added link to donations to funding document, following a GitHub standard.
» Bumped requirements for development to the latest versions, esp. newer isort.

» Added a rough description of tests to do to add a new CPython test suite, to allow others to take this
task in the future.

» Updated the git hook so that Windows and newest git works.

» Make it more clear in the documentation that Microsoft Appstore Python is not supported.

Summary

This is the big release in terms of scalability. The optimization in this release mostly focused on getting
things that cause increased compile times sorted out. A very important fix avoids loop optimization to leak
into global passes of all modules unnecessarily, but just as important, generated code now is much better
for the C compiler to consume in observed problematic cases.

More optimization changes are geared towards reducing Nuitka frontend compile time, which could also
be a lot in some cases, ending up specializing more constant nodes and how they expose themselves to
optimization.

Other optimization came from supporting Python 3.9 and things come across during the implementation of
that feature, e.g. to be able to make differences with unpacking error messages, we provide more code to
handle it ourselves, and to manually optimize how to interact with e.g. | i st objects.

For Windows, the automatic download of ccache and a matching MinGW®64 if none was found, is a new
step, that should lower the barrier of entry for people who have no clue what a C compiler is. More
changes are bound to come in this field with future releases, e.g. making a minimum version requirement
for gcc on Windows that excludes unfit C compilers.

All in all, this release should be taken as a major cleanup, resolving many technical debts of Nuitka and
preparing more optimization to come.

Nuitka Release 0.6.9

This releases contains important bug fixes for regressions of the 0.6.8 series which had relatively many
problems. Not all of these could be addressed as hotfixes, and other issues were even very involved,
causing many changes to be necessary.

There are also many general improvements and performance work for tracing and loops, but the full
potential of this will not be unlocked with this release yet.

Bug Fixes

* Fix, loop optimization sometimes didn't determinate, effectively making Nuitka run forever, with no
indication why. This has been fixed and a mechanism to give up after too many attempts has been
added.

* Fix, closure taking object allowed a brief period where the garbage collector was exposed to
uninitialized objects. Fixed in 0.6.8.1 already.

» Python3.6+: Fix corruption for exceptions thrown into asyncgen. Fixed in 0.6.8.1 already.

* Fix, deleting variables detected as C type bool could raise an UnboundLocal Err or that was wrong.
Fixed in 0.6.8.1 already.

» Python3.8.3+: Fix, future annotations parsing was using hard coded values that were changed in
CPython, leading to errors.

» Windows: Avoid encoding issues for Python3 on more systems, by going from wide characters to
unicode strings more directly, avoiding an encoding as UTF-8 in the middle. Fixed in 0.6.8.2 already.

» Windows: Do not crash when warning about uninstalled MSVC using Python3. This is a Scons bug
that we fixed. Fixed in 0.6.8.3 already.

« Standalone: The output of dependency walker should be considered as "latin1" rather than UTF-8.
Fixed in 0.6.8.3 already.

« Standalone: Added missing hidden dependencies for f | ask. Fixed in 0.6.8.1 already.
« Standalone: Fixed wi n32com cl i ent on Windows. Fixed in 0.6.8.1 already.

« Standalone: Use pkguti| to scan encoding modules, properly ignoring the same files as Python
does in case of garbage files being there. Fixed in 0.6.8.2 already.

* Plugins: Enabling a plugin after the filename to compile was given, didn't allow for arguments to the
passed, causing problems. Fixed in 0.6.8.3 already.

« Standalone: The certi fi data file is now supported for all modules using it and not only some.

« Standalone: The bytecode for the standard library had filenames pointing to the original installation
attached. While these were not used, but replaced at run time, they increased the size of the binary,
and leaked information.

« Standalone: The path of sys. execut abl e was not None, but pointing to the original executable,
which could also point to some temporary virtualenv directory and therefore not exist, also it was
leaking information about the original install.

» Windows: With the MSVC compiler, elimination of duplicate strings was not active, causing even
unused strings to be present in the binary, some of which contained file paths of the Nuitka
installation.

» Standalone: Added support for pyglet.

* Plugins: The command line handling for Pmw plugin was using wrong defaults, making it include
more code than necessary, and to crash if it was not there.

New Features

» Windows: Added support for using Python 2.7 through a symlink too. This was already working for
Python3, but a scons problem prevented this from working.

 Caching of compiled C files is now checked with ccache and clcache, and added automatically where
possible, plus a report of the success is made. This can accelerate the re-compile very much, even if
you have to go through Nuitka compilation itself, which is not (yet) cached.

» Added new - - qui et option that will disable informational traces that are going to become more.

» The Clang from MSVC installation is now picked up for both 32 and 64 bits and follows the new
location in latest Visual Studio 2019.

» Windows: The ccache from Anaconda is now supported as well as the one from msys64.
Optimization

 The value tracing has become more correct with loops and in general less often inhibits optimization.
Escaping of value traces is how a separate trace state allowing for more appropriate handling of
actual unknowns.

» Memory used for value tracing has been lowered by removing unnecessary states for traces, that we
don't use anymore.

» Windows: Prevent scons from scanning for MSVC when asked to use MinGW64. This avoids a
performance loss doing something that will then end up being unused.

» Windows: Use function level linking with MSVC, this will allow for smaller binaries to be created, that
don't have to include unused helper functions.

Cleanups

» The scons file now uses Nuitka utils functions and is itself split up into several modules for enhanced
readability.

* Plugin interfaces for providing extra entry points have been cleaned up and now named tuples are
used. Backward compatibility is maintained though.

Organisational

» The use of the logging module was replaced with more of our custom tracing and we now have the
ability to write the optimization log to a separate file.

* Old style plugin options are now detected and reported as a usage error rather than unknown plugin.

» Changed submodules to use git over https, so as to not require ssh which requires a key registered
and causes problems with firewalls too.

» More correct Debian copyright file, made formatting of emails in source code consistent.

» Added repository for Ubuntu focal.

Summary

The main focus of this release has been bug fixes with only a little performance work due to the large
amount of regressions and other findings from the last release.

The new constants loading for removes a major scalability problem. The checked and now consistently
possible use of ccache and cl cache allows for much quicker recompilation. Nuitka itself can still be slow
in some cases, but should have seen some improvements too. Scalability will have to remain a focus for
the next releases too.

The other focus, was to make the binaries contain no original path location, which is interesting for
standalone mode. Nuitka should be very good in this area now.

For optimization, the new loop code is again better. But it was also very time consuming, to redo it, yet
again. This has prevented other optimization to be added.

And then for correctness, the locals scope work, while very invasive, was necessary, to handle the usage
of locals inside of contractions, but also will be instrumental for function inlining to become generally
available.

So, ultimately, this release is a necessary intermediate step. Upcoming releases will be able to focus more
clearly on run time performance again as well as on scalability for generated C code.

Nuitka Release 0.6.8

This releases contains important general improvements and performance improvements and enhanced
optimization as well as many bug fixes that enhance the Python 3.8 compatibility.

Bug Fixes

» Python3.5+: Fix, coroutines and asyncgen could continue iteration of awaited functions, even after
their return, leading to wrong behaviour.

» Python3.5+: Fix, absolute imports of names might also refer to modules and need to be handled for
module loading as well.

* Fix, the f rom i st of imports could loose references, potentially leading to corruption of contained
strings.

» Python3.8: Fix, positional only arguments were not enforced to actually be that way.

» Python3.8: Fix, complex calls with star arguments that yielded the same value twice, were not yet
caught.

» Python3.8: Fix, evaluation order for nested dictionary contractions was not followed yet.

» Windows: Use short paths, these work much better to load extension modules and TCL parts of
Tkinter cannot handle unicode paths at all. This makes Nuitka work in locations, where normal
Python cannot.

» Windows: Fixup dependency walker in unicode input directories.

 Standalone: Use frozen module loader only at |i bpython initialisation and switch to built-in
bytecode loader that is more compatible afterwards, increasing compatibility.

« Standalone: Fix for pydant i ¢ support.
« Standalone: Added missing hidden dependency of uvicorn.
* Fix, the parser for . pyi files couldn't handle multiline imports.

» Windows: Derive linker arch of Python from running binary, since it can happen that the Python
binary is actually a script.

* Fixup static linking with | i bpyt hon. a that contains mai n. o by making our colliding symbols for
Py _Get Ar gcAr gv weak.

» Python3.7: Fix misdetection as asyncgen for a normal generator, if the iterated value is async.
« Distutils: Fix bui | d_nui t ka for modules under nested namespaces.

» OpenBSD: Follow usage of clang and other corrections to make accelerated mode work.

» macOS: Fixup for standalone mode library scan.

* Fix, the logging of - - show nodul es was broken.

» Windows: Enable / bi gobj mode for MSVC for large compilations to work.

» Windows: Fixup crash in warning with pefile dependency manager.

* Windows: Fixup wi n32com standalone detection of other Python version wi n32comis in system
PATH.

* Fix, the python flag for static hashes didn't have the intended effect.

* Fix, generators may be resurrected in the cause of their destruction, and then must not be released.

* Fix, method objects didn't implement the methods __reduce___ and __reduce_ex__ necessary for
pickling them.

» Windows: Fix, using a Python installation through a symlink was not working.

» Windows: Fix, icon paths that were relative were not working anymore.

» Python3.8: Detect duplicate keywords yielded from star arguments.

* Fix, methods could not be pickled.

» Fix, generators, coroutines and asyncgen might be resurrected during their release, allow for that.

* Fix, frames need to traverse their attached locals to be released in some cases.

New Features

* Plugin command line handling now allows for proper opt par se options to be used, doing away with
special parameter code for plugins. The arguments now also become automatically passed to the
instantiations of plugins.

Loading and creation of plugins are now two separate phases. They are loaded when they appear on
the command line and can add options in their own group, even required ones, but also with default
values.

» Started using logging with name-spaces. Applying logging per plugin to make it easier to recognize
which plugin said what. Warnings are now colored in red.

» Python3.5+: Added support for two step module loading, making Nuitka loading even more
compatible.

» Enhanced import tracing to work on standalone binaries in a useful manner, allow to compare with
normal binaries.

* Fix, the set at t r built-in was leaking a reference to the None value.
Optimization

* Proper loop SSA capable of detecting shapes with an incremental initial phase and a final result of
alternatives for variables written in the loop. This detects shapes of manual integer incrementing
loops correctly now, it doesn't see through iterators yet, but this will come too.

» Added type shapes for all operations and all important built-in types to allow more compile time
optimization and better target type selection.

 Target type code generation was expanded from manual usage with conditions to all operations
allowing to get at bool target values more directly.

» For in-place operations, there is the infrastructure to generate them for improved performance, but so
far it's only used for Python2 int, and not for the many types normal operations are supported.

» Force usage of C boolean type for all indicator variables from the re-formulation. In some cases, we
are not yet there with detections, and this gives instant benefit.

» Complex constants didn't annotate their type shape, preventing compile time optimization for them.

» Python3.8: Also support vectorcall for compiled method objects. These are rarely used in new
Python, but can make a difference.

* Remove loops that have only a final break. This happens in static optimization in some cases, and
allows more optimization to be done.

* Avoid using a preparing a constant tuple value for calls with only constant arguments.

» Avoid using PyErr _For mat where it's not necessary by adding specialized helpers for common
cases.

 Detect del statements that will raise an exception and replace with that.

» Exception matching is boolean shape, allowing for faster code generation.

» Disable recursion checks outside of full compat mode.

« Avoid large blocks for conditional statements that only need to enclose the condition evaluation.

» Added shortcuts for interactions between compiled generator variants, to avoid calls to their C
methods with argument passing, etc.

Organisational

» Updated Developer Manual with changes that happened, removing the obsolete language choice
section.

» Added 3.8 support mentions in even more places.
» The mailing list has been deleted. We now prefer Gitter chat and GitHub issues for discussions.

« Visual Code recommended extensions are now defined as such in the project configuration and you
will be prompted to install them.

« Visual Code environents for Py38 and Py27 were added for easier switch.

« Catch usage of Python from the Microsoft App Store, it is not supported and seems to limit access to
the Python installation for security reasons that make support impossible.

» Make it clear that - - f ul | - conpat should not be used in help output.

» Added instructions for MSVC runtimes and standalone compilation to support Windows 7.
» More complete listing of copyright holders for Debian.

» Updated to newer black and PyLint.

» Enhanced gcc version check, properly works with gcc 10 and higher.

Tests

* Pylint cleanups for some of the tests.
» Added test for loading of user plugins.

» Removed useless outputs for sear ch mode skipping non-matches.

Cleanups

* Limit command line handling for multiprocessing module to when the plugin is actually used, avoiding
useless code of Windows binaries.

* Pylint cleanup also foreign code like oset and odi ct .

« In preparation of deprecating the alternative, - - enabl e- pl ugi n has become the only form used in
documentation and tests.

* Avoid numeric pylint symbols more often.

« Distutils: Cleanup module name for distutils commands, these are not actually enforced by distutils,
but very ugly in our coding conventions.

» The "cannot get here" code to mark unreachable code has been improved and no longer needs an
identifier passed, but uses the standard C mechanism for that.

» Removed accessors for lookup sources from nodes, allowing for faster usage and making sure,
lookups are only done where needed.

Summary

This release is huge in terms of bugs fixed, but also extremely important, because the new loop SSA and
type tracing, allows for many more specialized code usages. We now can trace the type for some loops to
be specifically an integer or long value only, and will become able to generate code that avoids using
Python objects, in these cases.

Once that happens, the performance will make a big jump. Future releases will have to consolidate the
current state, but it is expected that at least an experimental addition of C type f | oat or C | ong can be
added, add to that i t er at or type shape and value analsis, and an actual jump in performance can be
expected.

Nuitka Release 0.6.7

This release contains bug fixes and improvements to the packaging, for the RPM side as well as for
Debian, to cover Python3 only systems as they are now becoming more common.

Bug Fixes

» Compatibility: The value of _ _nmodul e__ for extension modules was not dependent into which
package the module was loaded, it now is.

» Anaconda: Enhanced detection of Anaconda for Python 3.6 and higher.
» CentOS6: Detect gcc version to allow saving on macro memory usage, very old gcc didn't have that.

* Include Python3 for all Fedora versions where it works as well as for openSUSE versions 15 and
higher.

» Windows: Using short path names to interact with Scons avoids problems with unicode paths in all
cases.

* macOS: The usage of i nstall _nane_t ool could sometimes fail due to length limits, we now
increase it at link time.

» macOS: Do not link against | i bpyt hon for module mode. This prevented extension modules from
actually being usable.

» Python3.6: Follow coroutine fixes in our asyncgen implementation as well.

* Fix, our version number handling could overflow with minor versions past 10, so we limited it for now.

New Features

» Added support for Python 3.8, the experimental was already there and pretty good, but now added
the last obscure features too.

* Plugins can now provide C code to be included in the compilation.

» Distutils: Added targets bui | d_nui t ka and i nst al | _nui t ka to complement bdi st _nui t ka, so
we support software other than wheels, e.g. RPM packaging that compiles with Nuitka.

» Added support for | | db the Clang debugger with the - - debugger mode.
Optimization

» Make the file prefix map actually work for gcc and clang, and compile files inside the build folder,
unless we are running in debugger mode, so we use ccache caching across different compilations
for at least the static parts.

 Avoid compilation of __f r ozen. ¢ in accelerated mode, it's not used.

* Prefer using the inline copy of scons over systems scons. The later will only be slower. Use the
fallback to external scons only from the Debian packages, since there we consider it forbidden to
include software as a duplicate.

Organisational

» Added recommended plugins for Visual Code, replacing the list in the Developer Manual.
» Added repository for Fedora 30 for download.
» Added repository for CentOS 8 for download.

» Updated inline copy of Scons used for Python3 to 3.1.2, which is said to be faster for large
compilations.

» Removed Eclipse setup from the manual, it's only infererior at this point and we do not use it
ourselves.

» Debian: Stop recommending PyQt5 in the package, we no longer use it for built-in GUI that was
removed.

» Debian: Bumped the standards version and modernized the packaging, solving a few warnings
during the build.

Cleanups

* Scons: Avoid to add Unix only include paths on Windows.

» Scons: Have the static source code in a dedicated folder for clarity.

Tests

» Added tests to GitHub Actions, for the supported Python versions for all of Linux, macOS and
Windows, covering the later publicly for the first time. We use Anaconda on macOS for the tests now,
rather than Homebrew.

» Enable 10 encoding to make sure we use UTF-8 for more test suites that actually need it in case of
problems.

» Comparing module outputs now handles segfaults by running in the debugger too.

Summary

This release adds full support for Python 3.8 finally, which took us a while, and it cleans up a lot on the
packaging side. There aren't that many important bug fixes, but it's still nice to this cleaned up.

We have important actual optimization in the pipeline that will apply specialization to target types and for
comparison operations. We expect to see actual performance improvements in the next release again.

Nuitka Release 0.6.6

This release contains huge amounts of crucial bug fixes all across the board. There is also new
optimization and many organisational improvements.

Bug Fixes

* Fix, the top level module must not be bytecode. Otherwise we end up violating the requirement for an
entry point on the C level.

» Fix, avoid optimizing calls with default values used. This is not yet working and needed to be disabled
for now.

» Python3: Fix, missing keyword only arguments were not enforced to be provided keyword only, and
were not giving the compatible error message when missing.

» Windows: Find wi n32com DLLs too, even if they live in sub folders of site-packages, and
otherwise not found. They are used by other DLLs that are found.

« Standalone: Fixup for problem with standard library module in most recent Anaconda versions.

* Scons: Fix, was using CXXFLAGS and CPPFLAGS even for the C compiler, which is wrong, and could
lead to compilation errors.

» Windows: Make - - cl ang limited to cl ang- cl . exe as using it inside a MinGW64 is not currently
supported.

« Standalone: Added support for using | i b2t 02. pgen.
» Standalone: Added paths used by openSUSE to the Tcl/Tk plugin.

» Python3.6+: Fix, the __nmai n__ package was None, but should be
from itself.

which allows relative imports

» Python2: Fix, compile time optimization of floor division was using normal division.

» Python3: Fix, some run time operations with known type shapes, were falsely reporting error
message with uni code or | ong, which is of course not compatible.

* Fix, was caching parent package, but these could be replaced e.g. due to bytecode demotion later,
causing crashes during their optimization.

* Fix, the value of _ conpil ed__ could be corrupted when being deleted, which some modules
wrappers do.

* Fix, the value of __package__ could be corrupted when being deleted.

» Scons: Make sure we can always output the compiler output, even if it has a broken encoding. This
should resolve MSVC issues on hon-English systems, e.g. German or Chinese.

« Standalone: Support for newest skl ear n was added.
» macOS: Added resolver for run time variables in ot ool output, that gets PyQt5 to work on it again.

* Fix, floor division of run time calculations with float values should not result in i nt, but f | oat values
instead.

» Standalone: Enhanced support for bot 03 data files.
» Standalone: Added support for osgeo and gdal .

» Windows: Fix, there were issues with spurious errors attaching the constants blob to the binary due to
incorrect C types provided.

« Distutils: Fix, need to allow / as separator for package names too.

» Python3.6+: Fix reference losses in asyncgen when throwing exceptions into them.
» Standalone: Added support for di | | .

» Standalone: Added support for sci ki t -i mage and ski nage.

« Standalone: Added support for weasypri nt .

» Standalone: Added support for dask.

« Standalone: Added support for pendul um

« Standalone: Added support for pyt z and pyt zdat a.

* Fix, - - pyt hon- f | ags=no_docst ri ngs no longer implies disabling the assertions.

New Features

» Added experimental support for Python 3.8, there is only very few things missing for full support.

» Distutils: Added support for packages that are in a namespace and not just top level.

« Distutils: Added support for single modules, not only packages, by supporting py_nodul es as well.
» Distutils: Added support for distinct namespaces.

» Windows: Compare Python and C compiler architecture for MSVC too, and catch the most common
user error of mixing 32 and 64 bits.

 Scons: Output variables used from the outside, so the debugging is easier.

» Windows: Detect if clang installed inside MSVC automatically and use it if requested via - - cl ang
option. This is only the 32 bits variant, but currently the easy way to use it on Windows with Nuitka.

Optimization

 Loop variables were analysed, but results were only available on the inside of the loop, preventing
many optimization in these cases.

» Added optimization for the abs built-in, which is also a numerical operator.

» Added optimization for the al | built-in, adding a new concept of iteration handle, for efficient
checking that avoids looking at very large sequences, of which properties can still be known.

all (range(1, 100000)) # no need to look at all of them

» Added support for optimizing | mport Er r or construction with keyword-only arguments. Previously
only used without these were optimized.

raise InportError(path="1ala", nane="lele") # now optin zed
» Added manual specialization for single argument calls, sovling a TODO, as these will be very
frequent.

» Memory: Use single child form of node class where possible, the general class now raises an error if
used with used with only one child name, this will use less memory at compile time.

* Memory: Avoid list for non-local declarations in every function, these are very rare, only have it if
absolutely necessary.

» Generate more compact code for potential NanmeEr r or exceptions being raised. These are very
frequent, so this improves scalability with large files.

* Python2: Annotate comparison of None with i nt and st r types as not raising an exception.
» Shared empty body functions and generators.

One shared implementation for all empty functions removes that burden from the C compiler, and
from the CPU instruction cache. All the shared C code does is to release its arguments, or to return
an empty generator function in case of generator.

* Memory: Added support for automatic releases of parameter variables from the node tree. These are
normally released in a try finally block, however, this is now handled during code generation for much
more compact C code generated.

» Added specialization for i nt and | ong operations % <<, >>,| , & ", **, @
» Added dedicated nodes for representing and optimizing based on shapes for all binary operations.

» Disable gcc macro tracing unless in debug mode, to save memory during the C compilation.

» Restored Python2 fast path for i nt with unknown object types, restoring performance for these.

Cleanups

» Use dedicated Mbdul eNane type that makes the tests that check if a given module name is inside a
namespace as methods. This was hard to get right and as a result, adopting this fixed a few bugs and
or inconsistent results.

» Expand the use of nui t ka. Post Processi ng to cover all actions needed to get a runnable binary.
This includes using i nst al | _name_t ool on macOS standalone, as well copying the Python DLL
for acceleration mode, cleaning the x bit for module mode. Previously only a part of these lived there.

 Avoid including the definitions of dynamically created helper functions in the C code, instead just
statically declare the ones expected to be there. This resolves Visual Code complaining about it, and
should make life also easier for the compiler and caches like ccache.

» Create more helper code in closer form to what cl ang- f or mat does, so they are easier to compare
to the static forms. We often create hard coded variants for few arguments of call functions, and
generate them for many argument variations.

» Moved setter/getter methods for Nuitka nodes consistently to the start of the node class definitions.
» Generate C code much closer to what cl ang- f or mat would change it to be.

« Unified calling i nstal | _nanme_t ool on macOS into one function that takes care of all the things,
including e.g. making the file writable.

» Debug output from scons should be more consistent and complete now.
« Sort files for compilation in scons for better reproducible results.

* Create code objects version independent, avoiding python version checks by pre-processor, hiding
new stuff behind macros, that ignore things on older Python versions.

Tests

» Added many more built-in tests for increased coverage of the newly covered ones, some of them
being generic tests that allow to test all built-ins with typical uses.

» Many tests have become more PyLint clean as a result of work with Visual Code and it complaining
about them.

» Added test to check PyPI health of top 50 packages. This is a major GSoC 2019 result.
* Output the standalone directory contents for Windows too in case of a failure.

» Added generated tests to fully cover operations on different type shapes and their errors as well as
results for typical values.

» Added support for testing against installed version of Nuitka.

* Cleanup up tests, merging those for only Python 3.2 with 3.3 as we no longer support that version
anyway.
» Execute the Python3 tests for macOS on Travis too.

Organisational

» The donation sponsored machine called donat i x had to be replaced due to hardware breakage. It
was replaced with a Raspberry-Pi 4.

» Enhanced plugin documentation.

» Added description of the git workflow to the Developer Manual.

» Added checker script check- nui t ka-wi t h-codespel | that reports typos in the source code for
easier use of codespel | with Nuitka.

» Use newest PyLint and clang-format.

* Also check plugin documentation files for ReST errors.

» Much enhanced support for Visual Code configuration.

* Trigger module code is now written into the build directory in debug mode, to aid debugging.

» Added deep check function that descends into tuples to check their elements too.

Summary

This release comes after a long time of 4 months without a release, and has accumulated massive
amounts of changes. The work on CPython 3.8 is not yet complete, and the performance work has yet to
show actual fruit, but has also progressed on all fronts. Connecting the dots and pieces seems not far
away.

Nuitka Release 0.6.5

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

» Python3.4+: Fixed issues with modules that exited with an exception, that could lead to a crash,
dealing with their __spec__ value.

» Python3.4+: The __| oader __ method i s_package had the wrong signature.
* Python3.6+: Fix for async wi t h being broken with uncompiled generators.

» Python3.5+: Fix for cor out i nes that got their awaited object closed behind their back, they were
complaining with Runt i neEr r or should they be closed themselves.

* Fix, constant values None in a bool target that could not be optimized away, lead to failure during
code generation.

if x() and None:

* Standalone: Added support for sha224, sha384, sha512 in crypto package.
» Windows: The icon wasn't properly attached with MinGW64 anymore, this was a regression.

» Windows: For compiler outputs, also attempt preferred locale to interpret outputs, so we have a better
chance to not crash over MSVC error messages that are not UTF-8 compatible.

» macOS: Handle filename collisions for generated code too, Nuitka now treats all filesystems for all
OS as case insensitive for this purpose.

» Compatibility: Added support for tolerant del in class exception handlers.
class C

try:

except Exception as e:
del e

At exception handler exit, "e" is deleted if still assigned

We already were compatible for functions and modules here, but due to the special nature of class
variables really living in dictionaries, this was delayed. But after some other changes, it was now
possible to solve this TODO.

« Standalone: Added support for Python3 variant of Pmw.

* Fix, the NumPy plugin now handles more installation types.

* Fix, the gt plugin now handles multiple library paths.

* Fix, need | i bmfor some Anaconda variants too.

* Fix, left over bytecode from plugins could crash the plugin loader.

* Fix, pkgutil.iter_packages is nhow working for loaded packages.

New Features

 Python3.8: Fol