User Documentation for ARKODE v5.3.0
SUNDIALS v6.3.0

Daniel R. Reynolds!, David J. Gardner?, Carol S. Woodward?, Rujeko Chinomona?®, and Cody J. Balos?
' Department of Mathematics, Southern Methodist University
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3Department of Mathematics, Temple University

August 10, 2022

agials

Q
<

w

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker,
Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction 3
1.1 Changes from previous Versions v v v it it e e e e e 4
1.2 Reading this User Guide e 25
1.3 SUNDIALS License and Notices o o v ittt e ettt e e e 26
2 Mathematical Considerations 29
2.1 Adaptive single-stepmethods L e 30
2.2 Interpolation e e e e e e e e e e e e e e 30
2.3 ARKStep — Additive Runge—Kuttamethods o 32
2.4 ERKStep — Explicit Runge—Kuttamethods 33
2.5 MRIStep — Multirate infinitesimal stepmethods 00000000 34
2.6 Errornorms e e e e e e e 35
2.7 Time step adaptivity o L e e e e e e e e e e e e e e e 36
2.8 Explicitstability e e e e e e e e e 39
29 Fixedtimestepping e e 40
2.10 Algebraic solvers L e 40
2.11 Rootfinding e e 50
2.12 Imequality Constraints o 0 i e e e e e e e e e e e e e e e e e 51
3 Code Organization 53
3.1 ARKODE organization e e e e e e e 53
4 Using SUNDIALS 57
4.1 The SUNContext Type o o i e e e e e e e e e 57
4.2 SUNDIALS Status Logging o . e e 61
4.3 Performance Profiling e e e e 65
4.4 SUNDIALS Version Information 68
4.5 SUNDIALS Fortran Interface 69
4.6 Features for GPU Accelerated Computing o e e 77
5 Using ARKODE 81
5.1 Accesstolibrary and header files L o 81
5.2 Using the ARKStep time-stepping module o Lol 85
5.3 Using the ERKStep time-steppingmodule o 174
5.4 Using the MRIStep time-stepping module e 207
5.5 User-supplied functions e e e e e e 263
6 Butcher Table Data Structure 277
6.1 ARKodeButcherTable functions e 278
7 Vector Data Structures 283
7.1 Description of the NVECTOR Modules ettt 283
7.2 Description of the NVECTOR operations o o v i i i vttt e e oo 289

10

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

NVECTOR functions required by ARKODE
The NVECTOR_SERIAL Module i
The NVECTOR_PARALLEL Module
The NVECTOR_OPENMP Module e i
The NVECTOR_PTHREADS Module ittt e
The NVECTOR_PARHYPModule i
The NVECTOR_PETSCModule it
The NVECTOR_CUDA Module et e ii e
The NVECTOR_HIP Module et
The NVECTOR_RAJA Module e e e
The NVECTOR_SYCL Module e e e e e e e e
The NVECTOR_OPENMPDEV Module
The NVECTOR_TRILINOS Module i
The NVECTOR_MANYVECTOR Module
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module o et
NVECTOR Examples o e e e e e e

Matrix Data Structures

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module i
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX_BAND Module i
The SUNMATRIX_CUSPARSEModule
The SUNMATRIX_SPARSEModule e
The SUNMATRIX_SLUNRLOC Module
SUNMATRIX Exampleso e
SUNMATRIX functions used by ARKODE,

Linear Algebraic Solvers

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

The SUNLinearSolver APL e e
ARKODE SUNLinearSolverinterface . e
The SUNLinSol_Band Module e
The SUNLinSol_Dense Module e e
The SUNLinSol_KLU Module e e e e e e e et
The SUNLinSol_LapackBand Module
The SUNLinSol_LapackDense Module
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module o o i i i i e
The SUNLinSol_PCG Module e e s e e e s e e
The SUNLinSol_SPBCGS Module e et et e e e
The SUNLinSol_SPFGMR Module it e et
The SUNLinSol_SPGMR Module e e e e e
The SUNLinSol_SPTFQMR Module e ettt e
The SUNLinSol_SuperLUDIST Module ettt
The SUNLinSol_SuperLUMT Module et e e e e e
The SUNLinSol_cuSolverSp_batchQR Module
SUNLinearSolver Examples o e

Nonlinear Algebraic Solvers

10.1
10.2

The SUNNonlinearSolver API e
ARKODE SUNNonlinearSolver interface 0 v i i e

ii

10.3 The SUNNonlinSol_Newton implementation
10.4 The SUNNonlinSol_FixedPoint implementation
10.5 The SUNNonlinSol_PetscSNES implementation

11 Tools for Memory Management
11.1 The SUNMemoryHelper APL e e e e
11.2 The SUNMemoryHelper_Cuda Implementation
11.3 The SUNMemoryHelper_Hip Implementation
11.4 The SUNMemoryHelper_Sycl Implementation

12 SUNDIALS Installation Procedure
12.1 CMake-based installation L e e e
12.2 Installed libraries and exported header files

13 Appendix: ARKODE Constants

14 Appendix: Butcher tables
14.1 Explicit Butchertables e e e e e
14.2 TImplicit Butchertables L
14.3 Additive Butcher tables

15 Appendix: SUNDIALS Release History
Bibliography

Index

475
475
479
481
482

485
486
505

511

517
518
532
550

553

555

559

iii

User Documentation for ARKODE, v5.3.0

This is the documentation for ARKODE, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge—Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKODE solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations
in serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKODE is written in C, with C++ and Fortran interfaces.

ARKODE is developed by Southern Methodist University and Lawrence Livermore National Security, with support
by the US Department of Energy, Office of Science.

Contents 1

https://computing.llnl.gov/casc/sundials/main.html
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
https://www.smu.edu
https://www.llnl.gov
http://www.doe.gov
https://www.energy.gov/science/office-science

User Documentation for ARKODE, v5.3.0

2 Contents

Chapter 1

Introduction

The ARKODE infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKODE itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKODE is packaged with two time-stepping modules, ARKStep and ERKStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

M)y =f2ty)+ f(ty), yto)= o, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from R to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
o f1(t,y) contains the “stiff”” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge—Kutta methods. Such methods are defined
through combining two complementary Runge—Kutta methods: one explicit (ERK) and the other diagonally implicit
(DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components (1.1), such
methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed stiff/nonstiff
systems of ordinary differential equations. A key feature allowing for high efficiency of these methods is that only
the components in £ (¢,) must be solved implicitly, allowing for splittings tuned for use with optimal implicit solver
algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKODE is
packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit methods
of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

v =f(ty), y(to) = Yo (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge—Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.

MRIStep focuses specifically on problems posed in additive form,

y=rf"y) + ity + S (ty), ylte) = vo. (1.3)

where here the right-hand side function is additively split into three components:

User Documentation for ARKODE, v5.3.0

 fE(t,y) contains the “slow-nonstiff”” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff’ components of the system (this will be integrated using an implicit method and
a large time step 7°), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step A" < h°).

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step (MIS), multirate infinitesimal
GARK (MRI-GARK), and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods, allowing for evolution of the
problem (1.3) using multirate methods having orders of accuracy 2-4.

For ARKStep or MRIStep problems that include nonzero implicit term f7(¢, %), the resulting implicit system (assumed
nonlinear, unless specified otherwise) is solved approximately at each integration step, using a SUNNonlinearSolver
module, supplied either by the user or from the underlying SUNDIALS infrastructure. For nonlinear solver algorithms
that internally require a linear solver, ARKODE may use a variety of SUNLinearSolver modules provided with SUN-
DIALS, or again may utilize a user-supplied module.

1.1 Changes from previous versions

1.1.1 Changes in v5.3.0

Added the functions ARKStepGetUserData(), ERKStepGetUserData(), and MRIStepGetUserData() to retrieve
the user data pointer provided to ARKStepSetUserData(), ERKStepSetUserData (), and MRIStepSetUserData(),
respectively.

Fixed a bug in ERKStepReset (), ERKStepReInit(), ARKStepReset (), ARKStepReInit (), MRIStepReset(),
and MRIStepReInit () where a previously-set value of tstop (from a call to ERKStepSetStopTime (), ARKStepSet-
StopTime (), or MRIStepSetStopTime (), respectively) would not be cleared.

Updated MRIStepReset () to call the corresponding MRIStepInnerResetFn with the same (tg,yr) arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a variety of embedded DIRK methods from [49] and [50].

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.1.2 Changes in v5.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated ARKStepSetDiagnostics(), MRIStepSetDiagnostics(), ERKStepSetDiagnostics(), SUN-
NonlinSolSetPrintLevel_Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNonlinSolSetPrint-
Level_FixedPoint (), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSetInfoFile_PCG(), SUN-
LinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSetPrintLevel_SPGMR(),
SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLinSolSetInfoFile_SPT-
FQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(), SUNLinSolSetPrint-
Level_SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSetInfoFile_** and

4 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option SUNDIALS_LOG-
GING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the functions ARKStepPrintAllStats(), ERKStepPrintAllStats(), and MRIStepPrintAll() to output
all of the integrator, nonlinear solver, linear solver, and other statistics in one call. The file scripts/sundials_csv.
py contains functions for parsing the comma-separated value output files.

Added the functions ARKStepSetDeduceImplicitRhs () and MRIStepSetDeduceImplicitRhs () to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See §2.10.1, for considerations on
using this optimization.

Added the function MRIStepSetOrder () to select the default MRI method of a given order.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions ARKStepGetNumNonlinSolvConvFails(), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats() where the number of nonlinear
solver failures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. These functions have been updated to return the total number of
nonlinear solver failures. As such users may see an increase in the number of failures reported.

The functions ARKStepGetNumStepSolveFails() and MRIStepGetNumStepSolveFails() have been added to
retrieve the number of failed steps due to a nonlinear solver failure. The counts returned from these functions will
match those previously returned by ARKStepGetNumNonlinSolvConvFails (), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats().

1.1.3 Changes in v5.1.1

Fixed exported SUNDIALSConfig.cmake.
Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_£2003.£90 demonstrat-
ing MRI capabilities.

1.1. Changes from previous versions 5

User Documentation for ARKODE, v5.3.0

1.1.4 Changes in v5.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.1.5 Changes in v5.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create () to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

6 Chapter 1. Introduction

https://github.com/LLNL/Caliper

User Documentation for ARKODE, v5.3.0

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewlVithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

ARKODE

Removed

Replacement

SUNBandLinearSolver

SUNLinSol_Band()

SUNDenseLinearSolver

SUNLinSol_Dense()

SUNKLU

SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering ()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1l SUNLinSol_SPBCGSSetMax1()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()

SUNSPFGMRSetMaxRestarts

SUNLinSol_SPFGMRSetMaxRestarts()

SUNSPGMR

SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1l SUNLinSol_SPTFQMRSetMaxl()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering()

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge—Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate () has also been updated to

1.1. Changes from previous versions 7

User Documentation for ARKODE, v5.3.0

require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit () has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit () calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper () to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals () has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table structure MRIStepCouplingMem and the functions MRIStepCoupling_Alloc() and
MRIStepCoupling_Create() have also been updated to support IMEX-MRI-GARK methods.

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency () and ARKStepSetMaxStepsBetweenJac()
respectively.

The ARKODE Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details
using the SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS

SUN_MODIFIED_GS

CLASSICAL_GS

SUN_CLASSICAL_GS

ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn

DlsMat SUND1sMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2

BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2

continues on next page

8 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

Table 1.1 — continued from previous page

Deprecated Name New Name

TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2
KVAERNO_4_2_3 ARKODE_KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3 ARKODE_ARK324L2SA_DIRK_4_2_3
CASH_5_2_4 ARKODE_CASH_5_2_4

CASH_5_3_4 ARKODE_CASH_5_3_4
SDIRK_5_3_4 ARKODE_SDIRK_5_3_4
KVAERNO_5_3_4 ARKODE_KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4 ARKODE_ARK436L2SA_DIRK_6_3_4
KVAERNO_7_4_5 ARKODE_KVAERNO_7_4_5
ARK548L.2SA_DIRK_8_4_5 ARKODE_ARK548L2SA_DIRK_8_4_5
ARK437L2SA_DIRK_7_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4
ARK548L2SAb_DIRK_8_4_5 ARKODE_ARK5481L.2SAb_DIRK_8_4_5
MIN_DIRK_NUM ARKODE_MIN_DIRK_NUM
MAX_DIRK_NUM ARKODE_MAX_DIRK_NUM

MIS_KW3 ARKODE_MIS_KW3
MRI_GARK_ERK33a ARKODE_MRI_GARK_ERK33a
MRI_GARK_ERK45a ARKODE_MRI_GARK_ERK45a
MRI_GARK_IRK21la ARKODE_MRI_GARK_IRK21a
MRI_GARK_ESDIRK34a ARKODE_MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a ARKODE_MRI_GARK_ESDIRK46a
IMEX_MRI_GARK3a ARKODE_IMEX_MRI_GARK3a
IMEX_MRI_GARK3b ARKODE_TIMEX_MRI_GARK3b
IMEX_MRI_GARK4 ARKODE_TIMEX_MRI_GARK4
MIN_MRI_NUM ARKODE_MIN_MRI_NUM
MAX_MRI_NUM ARKODE_MAX_MRT_NUM
DEFAULT_MRI_TABLE_3 MRISTEP_DEFAULT_TABLE_3

DEFAULT_EXPL_MRI_TABLE_3 | MRISTEP_DEFAULT_EXPL_TABLE_3

DEFAULT_EXPL_MRI_TABLE_4 | MRISTEP_DEFAULT_EXPL_TABLE_4

DEFAULT_IMPL_SD_TABLE_2 MRISTEP_DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3 MRISTEP_DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4 MRISTEP_DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3 MRISTEP_DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4 MRISTEP_DEFAULT_IMEX_SD_TABLE_4

HEUN_EULER_2_1_2 ARKODE_HEUN_EULER_2_1_2
BOGACKI_SHAMPINE_4_2_3 ARKODE_BOGACKI_SHAMPINE_4_2_3
ARK324L2SA_ERK_4_2_3 ARKODE_ARK324L2SA_ERK_4_2_3
ZONNEVELD_5_3_4 ARKODE_ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_3_4 ARKODE_ARK436L2SA_ERK_6_3_4
SAYFY_ABURUB_6_3_4 ARKODE_SAYFY_ABURUB_6_3_4
CASH_KARP_6_4_5 ARKODE_CASH_KARP_6_4_5
FEHLBERG_6_4_5 ARKODE_FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5 ARKODE_DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5 ARKODE_ARK548L2SA_ERK_8_4_5
VERNER_8_5_6 ARKODE_VERNER_8_5_6
FEHLBERG_13_7_8 ARKODE_FEHLBERG_13_7_8
KNOTH_WOLKE_3_3 ARKODE_KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4 ARKODE_ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5 ARKODE_ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM ARKODE_MIN_ERK_NUM

continues on next page

1.1. Changes from previous versions 9

User Documentation for ARKODE, v5.3.0

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

Table 1.1 — continued from previous page

Deprecated Name

New Name

MAX_ERK_NUM

ARKODE_MAX_ERK_NUM

DEFAULT_ERK_2

ARKSTEP_DEFAULT_ERK_2

DEFAULT_ERK_3

ARKSTEP_DEFAULT_ERK_3

DEFAULT_ERK_4

ARKSTEP_DEFAULT_ERK_4

DEFAULT_ERK_5

ARKSTEP_DEFAULT_ERK_5

DEFAULT_ERK_6

ARKSTEP_DEFAULT_ERK_6

DEFAULT_ERK_8

ARKSTEP_DEFAULT_ERK_8

DEFAULT_DIRK_2

ARKSTEP_DEFAULT_DIRK_2

DEFAULT_DIRK_3

ARKSTEP_DEFAULT_DIRK_3

DEFAULT_DIRK_4

ARKSTEP_DEFAULT_DIRK_4

DEFAULT_DIRK_5

ARKSTEP_DEFAULT_DIRK_5

DEFAULT_ARK_ETABLE_3

ARKSTEP_DEFAULT_ARK_ETABLE_3

DEFAULT_ARK_ETABLE_4

ARKSTEP_DEFAULT_ARK_ETABLE_4

DEFAULT_ARK_ETABLE_5

ARKSTEP_DEFAULT_ARK_ETABLE_4

DEFAULT_ARK_ITABLE_3

ARKSTEP_DEFAULT_ARK_ITABLE_3

DEFAULT_ARK_ITABLE_4

ARKSTEP_DEFAULT_ARK_ITABLE_4

DEFAULT_ARK_ITABLE_5

ARKSTEP_DEFAULT_ARK_ITABLE_5

DEFAULT_ERK_2

ERKSTEP_DEFAULT_2

DEFAULT_ERK_3

ERKSTEP_DEFAULT_3

DEFAULT_ERK_4

ERKSTEP_DEFAULT_4

DEFAULT_ERK_5

ERKSTEP_DEFAULT_5

DEFAULT_ERK_6

ERKSTEP_DEFAULT_6

DEFAULT_ERK_8

ERKSTEP_DEFAULT_8

compiler):
Deprecated Name New Name
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS
DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1lsMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF

continues on next page
10 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

Table 1.2 — continued from previous page

Deprecated Name New Name

BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1lsMat_bandScale
bandAddIdentity SUND1sMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact

QRsol SUNQRsol

SUND1sMat_NewDenseMat
SUND1sMat_NewBandMat

DlsMat_NewDenseMat
DlsMat_NewBandMat

DestroylMat SUND1sMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1sMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1lsMat_SetToZero
PrintMat SUNDlsMat_PrintMat
newDenseMat SUND1lsMat_newDenseMat
newBandMat SUND1lsMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUNDlsMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.1.6 Changes in v4.8.0

The RAJA NVECTOR implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §9.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve () will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty () constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

ARKODE now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUNLin-
earSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-related

1.1. Changes from previous versions 11

User Documentation for ARKODE, v5.3.0

data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Support for user-defined inner (fast) integrators has been to the MRIStep module. See §5.4.4 for more information on
providing a user-defined integration method.

Added the functions ARKStepSetN1sRhsFn() and MRIStepSetNIsRhsFn() to supply an alternative implicit right-
hand side function for use within nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to £ind_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps () where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

1.1.7 Changes in v4.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At
present the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §7.13 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §9.8 for more details.

1.1.8 Changes in v4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.9 Changes in v4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §7.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer () operation, and that the pointer returned by N_VGetDeviceArrayPointer () is a valid CUDA device
pointer.

12 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

1.1.10 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.1.11 Changes in v4.4.0

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver. Fixed bug for ERK method integration with static mass
matrices.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the §5.2.4 section for more information and the example codes in examples/
arkode/CXX_xbraid. This interface required the addition of three new N_Vector operations to exchange vector data
between computational nodes, see N_VBufSize (), N_VBufPack(), and N_VBufUnpack (). These N_Vector opera-
tions are only used within the XBraid interface and need not be implemented for any other context.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [61], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

Added the functions ARKStepSetLSNormFactor (), ARKStepSetMassLSNormFactor (), and MRIStepSetLSNorm-
Factor () to specify the factor for converting between integrator tolerances (WRMS norm) and linear solver tolerances
(L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new reset functions ARKStepReset (), ERKStepReset (), and MRIStepReset () to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit (), ERKStepReInit (), and MRIS-
tepReInit () which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Added new functions ARKStepComputeState(), ARKStepGetNonlinearSystemData(), MRIStepComputeS-
tate(), and MRIStepGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn().

The expected behavior of SUNNonlinSolGetNumIters () and SUNNonlinSolGetNumConvFails () inthe SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retrieved
by calling ARKStepGetNumNonlinSolvIters (), the cumulative number of failures with ARKStepGetNumNonlin-
SolvConvFails(), or both with ARKStepGetNonlinSolvStats().

A minor bug in checking the Jacobian evaluation frequency has been fixed. As a result codes using using a non-
default Jacobian update frequency through a call to ARKStepSetMaxStepsBetweenJac() will need to increase the
provided value by 1 to achieve the same behavior as before. Additionally, for greater clarity the functions ARKStepSet-
MaxStepsBetweenLSet () and ARKStepSetMaxStepsBetweenJac() have been deprecated and replaced with ARK-
StepSetLSetupFrequency () and ARKStepSetJacEvalFrequency () respectively.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.1. Changes from previous versions 13

User Documentation for ARKODE, v5.3.0

1.1.12 Changes in v4.3.0

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug where inequality constraint checking would need to be disabled and then re-enabled to update the inequality
constraint values after resizing a problem. Resizing a problem will now disable constraints and a call to ARKStepSet-
Constraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the new problem
size.

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added the optional function ARKStepSetJacTimesRhsFn () to specify an alternative implicit right-hand side function
for computing Jacobian-vector products with the internal difference quotient approximation.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

1.1.13 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a similar bug in how ARKODE interfaces with scaled linear solvers when solving problems with non-identity
mass matrices. Here, the left scaling matrix should correspond with rwt and the right scaling matrix with ewt; these
were reversed but are now correct.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

The function ARKStepSetLinearSolutionScaling() was added to enable or disable the scaling applied to linear
system solutions with matrix-based linear solvers to account for a lagged value of in the linear system matrix e.g.,
M —~J or I — ~J. Scaling is enabled by default when using a matrix-based linear solver.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Added a new SUNMatrix implementation, §8.7, that interfaces to the sparse matrix implementation from the NVIDIA
cuSPARSE library. In addition, the §9.17 SUNLinearSolver has been updated to use this matrix, as such, users of
this module will need to update their code. These modules are still considered to be experimental, thus they are subject
to breaking changes even in minor releases.

Added a new “stiff” interpolation module, based on Lagrange polynomial interpolation, that is accessible to each of the
ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide increased interpolation
accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite interpolation module that can
suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite module remains the default, the

14 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

new Lagrange module may be enabled using one of the routines ARKStepSetInterpolantType (), ERKStepSet-
InterpolantType(), or MRIStepSetInterpolantType(). The serial example problem ark_brusselator.c
has been converted to use this Lagrange interpolation module. Created accompanying routines ARKStepSetInter-
polantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolantDegree() to provide user
control over these interpolating polynomials. While the routines ARKStepSetDenseOrder (), ARKStepSetDense-
Order () and ARKStepSetDenseOrder() still exist, these have been deprecated and will be removed in a future
release.

1.1.14 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file pointers that
are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called affer any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and may
be set by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData () to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData () will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accel-
eration. See §10.4.1 and the SUNNonlinSolSetDamping_FixedPoint () for more details.

1.1.15 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.
NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty () al-
locates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Additionally,
the function N_VCopyOps () has been added to copy the operation function pointers between vector objects. When

1.1. Changes from previous versions 15

User Documentation for ARKODE, v5.3.0

used in clone routines for custom vector objects these functions also will ease the introduction of any new optional
operations to the NVECTOR API by ensuring all operations are copied when cloning objects.

Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANY VECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompanied
by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVECTOR API.
The new required operation, N_VGetLength(), returns the global length of an N_Vector. The optional operations
have been added to support the new NVECTOR_MPIMANY VECTOR implementation. The operation N_VGetCom-
municator () must be implemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR,
but is not used outside of this context. The remaining nine operations are optional local reduction operations intended
to eliminate unnecessary latency when performing vector reduction operations (norms, etc.) on distributed memory
systems. The optional local reduction vector operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VMin-
Local (), N_VLINormLocal (), N_VWSqrSumLocal (), N_VWSqrSumMaskLocal (), N_VInvTestLocal(), N_VCon-
strMaskLocal (), and N_VMinQuotientLocal (). If an NVECTOR implementation defines any of the local oper-
ations as NULL, then the NVECTOR_MPIMANY VECTOR will call standard NVECTOR operations to complete the
computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X paradigm
where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied by additions to
user documentation and SUNDIALS examples.

The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_-
RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundi-
als_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users should use the
NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules
to replace the functionality. The necessary changes are minimal and should require few code modifications. See the
programs in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVECTOR_-
MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the §4.5 section for more details.

Added three new NVECTOR utility functions, N_VGetVecAtIndexVectorArray () N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray (), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor SUNMatNewEmpty ()
allocates an “empty” generic SUNMATRIX with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMATRIX API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps () has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMATRIX API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API. Users who have implemented cus-
tom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API to perform any setup necessary for

16 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure
member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations which
return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the §4.5 section for more details.
SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. The constructor SUNLinSol-
NewEmpty () allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by ensuring only required
operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag() has changed from long int to
sunindextype to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol_KLUGetSymbolic(), SUNLin-
Sol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon(), to provide user access to the underlying KLU solver
structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the §4.5 section for more details.
SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor SUNNon-
linSolNewEmpty () allocates an “empty” generic SUNNONLINEARSOLVER with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNNONLINEARSOLVER API by ensuring
only required operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNONLINEARSOLVER API has been updated to take a void* data pointer as input. The supplied
data pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNONLINEAR-
SOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Additionally,
the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNONLINEARSOLVER API
have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the PETSc
SNES nonlinear solver API.

1.1. Changes from previous versions 17

User Documentation for ARKODE, v5.3.0

Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the §4.5 section for more
details.

ARKODE changes

The MRIStep module has been updated to support explicit, implicit, or InEx methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate () which now
takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed to
converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit (), ARKStepReInit (), and MRIStepReInit () have been updated to
retain the minimum and maxiumum step size values from before reinitialization rather than resetting them to the default
values.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries of the
vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKODE will remove at least one global
reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian eval-
vation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn () was added as an alternative method for evaluating the linear
system A = M — ~J.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [51]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints () and ARKStepSet-

Constraints() for more details. Note that enabling constraint handling requires the NVECTOR operations N_VMin-
Quotient (), N_VConstrMask(), and N_VCompare () that were not previously required by ARKODE.

Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma (), and ARKStepGetCurrentState (), that
may be useful to users who choose to provide their own nonlinear solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn() for perform-
ing communication or memory transfers needed before or after the inner integration.

A new Fortran 2003 interface to ARKODE was added. This includes Fortran 2003 interfaces to the ARKStep, ERKStep,
and MRIStep time-stepping modules. See the §4.5 section for more details.

18 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

1.1.16 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate interop-
erability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMem structure will need to update their code to use ARKODE’s public APL

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.17 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.18 Changes in v3.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

1.1.19 Changes in v3.0.0

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

* The ERKStep module provides an optimized implementation for explicit Runge—Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

* The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see $6.

Two changes were made in the initial step size algorithm:
* Fixed an efficiency bug where an extra call to the right hand side function was made.

¢ Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

1.1. Changes from previous versions 19

User Documentation for ARKODE, v5.3.0

ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKODE’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into
a single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT
and ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes linear
solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implementations
are included in the chapter §9. All ARKODE examples programs and the standalone linear solver examples have been
updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been updated to
follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names are SUN-
LinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense, SUN-
LinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLin-
Sol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges in user
migration to the new names, the previous routine names may still be used; these will be deprecated in future releases, so
we recommend that users migrate to the new names soon. All ARKODE example programs and the standalone linear
solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNON-
LINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in §10 and follow
the same object oriented design and implementation used by the N'Vector, SUNMatrix, and SUNLinSol modules. Cur-
rently two SUNNONLINSOL implementations are provided, SUNNonlinSol_Newton and SUNNonlinSol_FixedPoint.
These replicate the previous integrator specific implementations of a Newton iteration and an accelerated fixed-point
iteration, respectively. Example programs using each of these nonlinear solver modules in a standalone manner have
been added and all ARKODE example programs have been updated to use generic SUNNonlinSol modules.

As with previous versions, ARKODE will use the Newton solver (now provided by SUNNonlinSol_Newton) by default.
Use of the ARKStepSetLinear () routine (previously named ARKodeSetLinear) will indicate that the problem is
linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch to the accelerated
fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that to ARKODE, instead
of calling the previous ARKodeSetFixedPoint routine. See the documentation sections §5.2.1, §5.2.2.5, and §10.4
for further details, or the serial C example program ark_brusselator_£fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an NVector
(see §7.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with acceler-
ators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an NVector implementation defines any of these operations as NULL, then
standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

* Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

e Added N_VGetLocalLength_Cuda to return the local vector length.

20 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_-
OpenMPDEV. See §7.14 for more details.

1.1.20 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path to CMAKE_-
INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib. CMAKE_INSTALL_LIBDIR is au-
tomatically set, but is available as a CMAKE option that can modified.

1.1.21 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

1.1. Changes from previous versions 21

User Documentation for ARKODE, v5.3.0

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.22 Changes in v2.1.2
Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally handle
the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The sum
now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient if the
user-supplied Jacobian routine allocates storage for the sum I + .J or M + ~J manually (with zero entries if needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.23 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to avoid
compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWirmsNormMask and revised the RAJA NVEC-
TOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

22 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

1.1.24 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.1.25 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

* Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APIL.

¢ Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented APIL

¢ Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

¢ Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

1.1. Changes from previous versions 23

https://software.llnl.gov/RAJA/

User Documentation for ARKODE, v5.3.0

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FOO_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.26 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.
The bugfixes include:

* For each linear solver, the various solver performance counters are now initialized to 0 in both the solver speci-
fication function and in the solver’s 1init function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

* The choice of the method vs embedding the Billington and TRBDF2 explicit Runge—Kutta methods were
swapped, since in those the lower-order coeflicients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

* A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

* A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

* Numerous aspects of the documentation were fixed and/or clarified.
The feature changes/enhancements include:

» Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

¢ Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module name.

* A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

* The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

e The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.

24 Chapter 1. Introduction

https://xsdk.info

User Documentation for ARKODE, v5.3.0

1.2

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKODE interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals() function was added — this had been included in the previous
documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge—Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

In the next section we provide a thorough presentation of the underlying mathematical algorithms used within
the ARKODE family of solvers.

We follow this with an overview of how the source code for both SUNDIALS and ARKODE are organized.

The largest section follows, providing a full account of how to use ARKODE’s time-stepping modules, ARKStep,
ERKStep, and MRIStep, within C and C++ applications. This section then includes additional information on
how to use ARKODE from applications written in Fortran, as well as information on how to leverage GPU
accelerators within ARKODE.

A much smaller section follows, describing ARKODE’s Butcher table structure, that is used by both ARKStep
and ERKStep.

Subsequent sections discuss shared SUNDIALS features that are used by ARKODE: vector data structures,
matrix data Structures, linear S()IVL)I' dam Structures, nonlinear S()ZVL)I' dCl[[l Structures, memory managemem
utilities, and the installation procedure.

The final sections catalog the full set of ARKODE constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKODE.

1.2. Reading this User Guide 25

User Documentation for ARKODE, v5.3.0

1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2022, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

26 Chapter 1. Introduction

User Documentation for ARKODE, v5.3.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

1.3. SUNDIALS License and Notices 27

User Documentation for ARKODE, v5.3.0

28 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

ARKODE solves ODE initial value problems (IVP) in RY posed in the form

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € RV, where we use the
notation ¢ to denote dy/dt.

For each value of ¢, M (t) is a user-specified linear operator from R” — R This operator is assumed to be nonsingular
and independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, I. For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed between spatial
rediscretization events).

The ODE right-hand side is given by the function f(¢,y) — in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKODE support
additive splittings of this right-hand side function, as described in the subsections that follow. Through these splittings,
the time-stepping methods currently supplied with ARKODE are designed to solve stiff, nonstiff, mixed stiff/nonstiff,
and multirate problems. As per Ascher and Petzold [11], a problem is “stiff” if the stepsize needed to maintain stability
of the forward Euler method is much smaller than that required to represent the solution accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKODE. We first discuss the
“single-step” nature of the ARKODE infrastructure, including its usage modes and approaches for interpolated so-
lution output. We then discuss the current suite of time-stepping modules supplied with ARKODE, including the
ARKStep module for additive Runge—Kutta methods, the ERKStep module that is optimized for explicit Runge—Kutta
methods, and the MRIStep module for multirate infinitesimal step (MIS), multirate infinitesimal GARK (MRI-GARK),
and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods. We then discuss the adaptive temporal error controllers
shared by the time-stepping modules, including discussion of our choice of norms for measuring errors within various
components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKODE’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKODE'’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

29

User Documentation for ARKODE, v5.3.0

2.1 Adaptive single-step methods

The ARKODE infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = P(Yn—1,hn)

where y,,_1 is an approximation to the solution y(¢,,_1), y,, is an approximation to the solution y(¢,,), t,, = tp—1+ hny,
and the approximation method is represented by the function ¢.

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accuracy
requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKODE’s time stepping modules may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, toy, in
the direction of integration, i.e. t,_1 < tou < t, for forward integration, or t,, < ton < t,—1 for backward
integration. It will then compute an approximation to the solution (%o,) by interpolation (using one of the dense
output routines described in the section §2.2).

* ONE-STEP - The solver will only take a single internal step y,,—1 — ¥, and then return control back to the
calling program. If this step will overtake ¢, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

* NORMAL-TSTOP — The solver will take internal steps until the next step will overtake ¢,,. It will then limit
this next step so that ¢, = t,_1 + h,, = tou, and once the step completes it will return a copy of the internal
solution ¥,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake ¢, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that ¢,, = ¢,,_1 + h,, = tou. In either case,
once the step completes it will return a copy of the internal solution y,,.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKODE support interpolation of solutions y () and derivatives
y(d) (tout), Where toy occurs within a completed time step from ¢,,_1 — t,,. Additionally, this module supports extrap-
olation of solutions and derivatives for ¢ outside this interval (e.g. to construct predictors for iterative nonlinear and
linear solvers). To this end, ARKODE currently supports construction of polynomial interpolants p,(t) of polynomial
degree up to ¢ = 5, although users may select interpolants of lower degree.

ARKODE provides two complementary interpolation approaches, both of which are accessible from any of the time-
stepping modules: “Hermite” and “Lagrange”. The former approach has been included with ARKODE since its in-
ception, and is more suitable for non-stiff problems; the latter is a new approach that is designed to provide increased
accuracy when integrating stiff problems. Both are described in detail below.

30 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.3.0

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

Y= f(t,y), y(tO) = Yo-

we typically construct temporal interpolants using the data {y,,,_l, fn_l, Yns fn}, where here we use the simplified

notation fk to denote f (tx, yr). Defining a normalized “time” variable, 7, for the most-recently-computed solution
interval t,,_1 — t,, as

we then construct the interpolants p,(t) as follows:
* ¢ = 0: constant interpolant

n—1 1 Yn
P (T) Yn—1 Y)
*q= 1: linear Lagrange interpolant

Pi(T) = —TYn1+ (1 +7T)Yn.
* ¢ = 2: quadratic Hermite interpolant
p2(7) = T2 Y1 + (L= 7))y + (7 +7%) i
* q = 3: cubic Hermite interpolant
ps(r) = (372 + 2% g1 + (1= 372 = 27%) g + b (72 + 72) o1 + hn(7 + 272+ 7°) fo.
* q = 4: quartic Hermite interpolant

h .
pa(T) = (=672 — 167 — 974 yp_1 + (1 + 672 + 167> + 97%) y,, + f(—57’2 — 1473 — 97'4) fn_1

27hy,
4

+hn(7-+27—2+7-3) fn"’ (_7-4 —27° _7—2) fm

. . B, 1
where f, = f <tn 3P (—3)) We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f(¢,), thereby increasing its cost in comparison with ps (¢).
* g = 5: quintic Hermite interpolant

ps(7) = (547° +1357* + 1107° 4 307°) yp—1 + (1 — 547° — 1357* — 1107° — 307°) yn,

h

n 5 2 N hn 5 2 A
+ 2 (277° + 6371 + 4973 +137%) f,_1 + 1(2770 + 727 + 6773 + 2672 + 1) £,

4
B oo 5 A f R
+ Z(81T° + 18974 + 13573 + 2772) f, + Z(sw + 21671 4 18973 + 5472) £,

L hin 1 . 2h,, 2
where f, = f (tn — ?,p4 (—3)) and fp = f (tn — 7’])4 (—3)). We point out that interpolation at
this degree requires four additional evaluations of the full right-hand side function f (t,y), thereby significantly

increasing its cost over py(t).

We note that although interpolants of order ¢ > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.

2.2. Interpolation 31

User Documentation for ARKODE, v5.3.0

2.2.2 Lagrange interpolation module

For stiff problems where f may have large Lipschitz constant, polynomial interpolants of Lagrange form are provided.
These interpolants are constructed using the data {y,, Yn—1,-..,Yn—r} Where 0 < v < 5. These polynomials have
the form

= Z Yn—;pi(t), where

Since we assume that the solutions y,,_; have length much larger than v < 5 in ARKODE-based simulations, we
evaluate p at any desired ¢ € R by first evaluating the Lagrange polynomial basis functions at the input value for ¢, and
then performing a simple linear combination of the vectors {y }%_,. Derivatives p(@ (t) may be evaluated similarly as

d
Pt Zyn 00 (),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions increases
dramatically as the derivative order grows, our Lagrange interpolation module currently only provides derivatives up
tod = 3.

We note that when using this interpolation module, during the first (v — 1) steps of integration we do not have sufficient
solution history to construct the full v-degree interpolant. Therefore during these initial steps, we construct the highest-
degree interpolants that are currently available at the moment, achieving the full v-degree interpolant once these initial
steps have completed.

2.3 ARKStep - Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKODE is designed for IVPs of the form

M(t)y = fE(ty) + f1(ty), ylto) = o, (2.2)
i.e. the right-hand side function is additively split into two components:
 fE(t,y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);
* fI(t,y) contains the “stiff” components of the system (this will be integrated using an implicit method);
and the left-hand side may include a nonsingular, possibly time-dependent, matrix M (¢).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

g=fty) + f(ty), ylte) = o, 2.3)
where fZ(t,y) = M(t)~! fE(t,y)and f1(t,y) = M(t)~' fT(t,y). ARKStep then utilizes variable-step, embedded,
additive Runge—Kutta methods (ARK), corresponding to algorithms of the form

i1
Zizynq-ﬁ-hnzz‘lfﬂm g %) T+ hn ZA ft nj, zj), i=1,...,s,

Y = Y1 + B Z(bEfE Fiz) + 0 FI L 7)) 24)

i=1

G = Yn1 + hn Z(bEfE B o) + Bt 2

i=1

32 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.3.0

Here §,, are embedded solutions that approximate y(¢,,) and are used for error estimation; these typically have slightly
lower accuracy than the computed solutions ¥,,. The internal stage times are abbreviated using the notation tﬁ j =
th—1 + cf h,, and t{l’ j=tn-1+ ch. h,. The ARK method is primarily defined through the coefficients AE ¢ Rsxs,
Al e R*#, bF € R*, b € R*, ¢¥ € R® and ¢! € R, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b” € R® and b’ € R® are used to construct the embedding 7,,. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages,
s. We note that except when the problem has a time-independent mass matrix M, ARKStep allows the possibility for
different explicit and implicit abscissae, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEXx, explicit, and implicit.
All of the built-in Butcher tables encoding the coefficients cZ, ¢!, AF, AT bF, b’ bF and b’ are further described in
the section §14.

For mixed stiff/nonstiff problems, a user should provide both of the functions ¥ and f’ that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [48], allowing for methods having
order of accuracy ¢ = {3,4,5} and embeddings with orders p = {2, 3,4}; the tables for these methods are given in
section §14.3. Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP

M@t)yy=f"(ty), y(to) = o 2.5)

In this scenario, the coefficients A7 = 0, ¢! = 0, b = 0 and b! = 0 in (2.4), and the ARK methods reduce to classical
explicit Runge—Kutta methods (ERK). For these classes of methods, ARKODE provides coefficients with orders of
accuracy ¢ = {2,3,4,5,6,8}, with embeddings of orders p = {1,2,3,4,5,7}. These default to the methods in
sections §14.1.1, §14.1.2, §14.1.5, §14.1.9, §14.1.14, and §14.1.15, respectively. As with ARK methods, user-defined
ERK tables are supported.

Alternately, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP

M)y =f'(ty), ylto) = 1o (2.6)

Similarly to ERK methods, in this scenario the coefficients A = 0, ¢ = 0, b® = 0 and b¥ = 0in (2.4), and the ARK
methods reduce to classical diagonally-implicit Runge—Kutta methods (DIRK). For these classes of methods, ARKODE
provides tables with orders of accuracy ¢ = {2, 3,4, 5}, with embeddings of orders p = {1, 2, 3,4}. These default to
the methods §14.2.1, §14.2.5, §14.2.8, and §14.2.13, respectively. Again, user-defined DIRK tables are supported.

2.4 ERKStep — Explicit Runge—Kutta methods

The ERKStep time-stepping module in ARKODE is designed for IVP of the form

y = f(tay)v y(tO) = Yo, (27)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
M (t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge—Kutta methods (ERK), corresponding
to algorithms of the form

i—1
ZZ:ynfl'i_hnZAl,jf(tnjazj» 2'21,...,87

Jj=1

Yn =Yn-1+hn D _bif(tni, 2), (2.8)

i=1

s
gn = Yn—-1 + hn Z bif(tn,i7 Zi)v
i=1

2.4. ERKStep — Explicit Runge-Kutta methods 33

User Documentation for ARKODE, v5.3.0

where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is similarly
encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve every
problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module
since this simplified form admits a more efficient and memory-friendly implementation than the more general form
2.7).

2.5 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKODE is designed for IVPs of the form

g=fEty)+)+ Py, yte) = v (2.9)

i.e., the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step 1), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step h!" < h).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M (t) = I. The
slow time scale may consist of only nonstiff terms (f! = 0), only stiff terms (f¥ = 0), or both nonstiff and stiff terms.

For cases with only a single slow right-hand side function (i.e., f¥ = 0 or f/ = 0), MRIStep provides fixed-slow-step
multirate infinitesimal step (MIS) [63, 64, 65] and multirate infinitesimal GARK (MRI-GARK) [61] methods. For
problems with an additively split slow right-hand side MRIStep provides fixed-slow-step implicit-explicit MRI-GARK
(IMEX-MRI-GARK) [25] methods. The slow (outer) method derives from an s stage Runge—Kutta method for MIS and
MRI-GARK methods or an additive Runge—Kutta method for IMEX-MRI-GARK methods. In either case, the stage
values and the new solution are computed by solving an auxiliary ODE with a fast (inner) time integration method.
This corresponds to the following algorithm for a single step:

1. Setz; = yn—_1.
2. Fort=2,...,s+ 1do:

Lo Letty, | =tn1+c hSando(t] ;) = zi1.

2. Let Ti(t) =

(TP (50 25) +
tsz 1)/(hSAC;9)
3. Fort € [t5, |,t5] solve o(t) = fE(t,v) + ri(t).

n,i—17“n,i

Aif 21 Yii (T)F(t] ;5 2;5) where Ac = (¢f — ¢}) and the

normalized tlme isT=(t—

4. Setz = v(t; ;).
3. Sety, = Zs+1.

The fast (inner) IVP solve can be carried out using either the ARKStep module (allowing for explicit, implicit, or ImEx
treatments of the fast time scale with fixed or adaptive steps), or a user-defined integration method (see section §5.4.4).

The final abscissa is ¢ 1 = 1 and the coeficients w; ; and -y; ; are polynomials in time that dictate the couplings from
the slow to the fast time scale; these can be expressed as in [25] and [61] as

wig(r) =Y wi) T and () =355, (2.10)
k>0 k>0

34 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.3.0

and where the tables Q{F} € R(s+1)x(s+1) apd T'1+} ¢ R(s+1)x(s+1) define the slow-to-fast coupling for the explicit
and implicit components respectively.

For traditional MIS methods, the coupling coefficients are uniquely defined based on a slow Butcher table (A7, b%, c%)
having an explicit first stage (i.e., c‘f = (0 and A‘f’j = 0for1 < j < s), sorted abscissae (i.e. c > cz Lfor2 <i <s),
and the final abscissa is ¢ < 1. With these properties met, the coupling coefficients for an explicit-slow method are
given as

0, ifi=1,
Wi = AS A, if2<i<s, @.11)
— AS ifi=s+1.

For general slow tables (A, b°, ¢*) with at least second-order accuracy, the corresponding MIS method will be second
order. However, if this slow table is at least third order and satisfies the additional condition

S

1 1
Z (¢f =) (ei+eim1)" AScS + (1—¢) (2 +e§Ascs> =3 (2.12)

=2

where e; corresponds to the j-th column from the s x s identity matrix, then the overall MIS method will be third
order.

In the above algorithm, when the slow (outer) method has repeated abscissa, i.e. Acf = 0 for stage 17, the fast (inner)
IVP can be rescaled and integrated analytically. In this case the stage is computed as

{k} i {k}
s Yig | E/ys s Tig | p1/,8
i =z_1+h Z | R) z_: el B GRENE (2.13)
j=1 \ k>0 j=1 \ k>0

which corresponds to a standard ARK, DIRK, or ERK stage computation depending on whether the summations over
k are zero or nonzero.

As with standard ARK and DIRK methods, implicitness at the slow time scale is characterized by nonzero values

on or above the diagonal of the matrices I't*}. Typically, MRI-GARK and IMEX-MRI-GARK methods are at most

diagonally-implicit (i.e., 72{ J} = 0 for all j > 7). Furthermore, diagonally-implicit stages are characterized as being

“solve-decoupled” if Acf = 0 when gamma_{i,i}"{k}} ne 0, in which case the stage is computed as standard ARK or
DIRK update. Alternately, a diagonally-implicit stage 7 is considered “solve-coupled” if Acy Vi]} # 0, in which case
the stage solution z; is both an input to 7(¢) and the result of time-evolution of the fast IVP, necessitating an implicit
solve that is coupled to the fast (inner) solver. At present, only “solve-decoupled” diagonally-implicit MRI-GARK and
IMEX-MRI-GARK methods are supported.

For problems with only a slow-nonstiff term (f! = 0), MRIStep provides third and fourth order explicit MRI-GARK
methods. In cases with only a slow-stiff term (E =), MRIStep supplies second, third, and fourth order implicit
solve-decoupled MRI-GARK methods. For applications with both stiff and nonstiff slow terms, MRIStep implements
third and fourth order IMEX-MRI-GARK methods. For a complete list of the methods available in MRIStep see
§5.4.3.2. Additionally, users may supply their own method by defining and attaching a coupling table, see §5.4.3 for
more information.

2.6 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKODE use a weighted root-mean-square norm, denoted || - ||wrwms, for all error-like quantities,

L 1/2
[0l wrms = < > (viw;)) : (2.14)
i=1

2.6. Error norms 35

User Documentation for ARKODE, v5.3.0

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

w; = (RTOL - |yn 1| + ATOL;) . (2.15)

Since 1/w; represents a tolerance in the i-th component of the solution vector y, a vector whose WRMS norm is
1 is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

w; = (RTOL - |(M(tu—1) yur),| + ATOL!) 2.16)

where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.15),
whereas values having “equation” units use (2.16). Obviously, for problems with M = I, the solution and equation
units are identical, in which case the solvers in ARKODE will use (2.15) when computing all error norms.

2.7 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error test
fails, then the step is recomputed with a reduced step size. To this end, the Runge—Kutta methods packaged within both
the ARKStep and ERKStep modules admit an embedded solution 3,,, as shown in equations (2.4) and (2.8). Generally,
these embedded solutions attain a slightly lower order of accuracy than the computed solution y,,. Denoting the order
of accuracy for y,, as ¢ and for §,, as p, most of these embedded methods satisfy p = g — 1. These values of ¢ and p
correspond to the global orders of accuracy for the method and embedding, hence each admit local truncation errors
satisfying [39]

lym = y(tn)ll = CRET! + O(REF?),

2.17)
1Gn — y(tn)|| = DRETT + O(REF?),
where C' and D are constants independent of h,,, and where we have assumed exact initial conditions for the step, i.e.

Yn—1 = Y(t,,—1). Combining these estimates, we have

yn = Full = 1y = y(ta) = Gn +y(E)ll < lyn = y(Ea) | + 190 — y(ta)l| < DRET + O(RET2).

We therefore use the norm of the difference between y,, and y,, as an estimate for the LTE at the step n
T = B (yn = Gn) = Bl 3 [(F = BF) 2t 20) + (o] = B) f1 (¢4 1,20)| 2.18)
i=1

for ARK methods, and similarly for ERK methods. Here, 8 > 0 is an error bias to help account for the error constant
D; the default value of this constant is 8 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply |7, || < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to determine the next
step size, the algorithms used for this purpose are described in §2.7. If the error test fails, the step is rejected and a
new step size b’ is then computed using the same error controller as for successful steps. A new attempt at the step is
made, and the error test is repeated. If the error test fails twice, then h’/h is limited above to 0.3, and limited below to
0.1 after an additional step failure. After seven error test failures, control is returned to the user with a failure message.
We note that all of the constants listed above are only the default values; each may be modified by the user.

36 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.3.0

We define the step size ratio between a prospective step h’ and a completed step h as 7, i.e. n = h’/h. This value is
subsequently bounded from above by 7nmax to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamxl1, on the first step (default is 10000),
Tmax = § growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

hO supplied?

compute h0 to
approximately solve

1h0r2 y” 1< 2

if (nst==0): h=h0
else: h=h*eta

attempt step
etamax = |
il (h==hmin or ncf==maxnc[): halt
no eta = max(etacf, hmin/h)
cstimate error: h=h*ecta
dsm = lly_errorll ctamax = |
nef = nef + 1
is dsm<l ? no il (h==hmin or nel[==maxnel): halt
eta = arkAdapt(h, h1, h2, dsm, el, e2)
if (nef >= small_nefl): eta = max(eta, etamxf)
yes h=h*ela
nst=nst+ 1

if (etamax==1): eta=1

eta = arkAdapt(h, hl, h2, dsm, el, e2)
—— h2=hl

hi=h

e2=el

el =dsm * bias

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 1 € [n.,ny|. The default values for this
interval are 7, = 1 and nyy = 1.5, and may be modified by the user.

We note that any choices for 77 (or equivalently, k') are subsequently constrained by the optional user-supplied bounds
hmin and hpax. Additionally, the time-stepping algorithms in ARKODE may similarly limit 4’ to adhere to a user-
provided “TSTOP” stopping point, sop.

The time-stepping modules in ARKODE adapt the step size in order to attain local errors within desired tolerances of
the true solution. These adaptivity algorithms estimate the prospective step size i’ based on the asymptotic local error
estimates (2.17). We define the values ¢,,, €,,_1 and £,,_5 as

e = [Tkl = Bllyx — Gll,

corresponding to the local error estimates for three consecutive steps, t,—3 — t,—o2 — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKODE supports
a variety of error control algorithms, as specified in the subsections below.

2.7. Time step adaptivity 37

User Documentation for ARKODE, v5.3.0

2.7.1 PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those found
in [48], [67], [68] and [69], and uses all three of the local error estimates &,,, £,,_1 and €,,_o in determination of a
prospective step size,

r_ —ki/p _k2/p _—k3/p
h = hye, Epty €

n—2 -

where the constants k1, ko and k3 default to 0.58, 0.21 and 0.1, respectively, and may be modified by the user. In this
estimate, a floor of £ > 10710 is enforced to avoid division-by-zero errors.

2.7.2 PI controller

Like with the previous method, the PI controller derives from those found in [48], [67], [68] and [69], but it differs in
that it only uses the two most recent step sizes in its adaptivity algorithm,
—ky k
B = hye® /P ¢ 2/{’.

n—

Here, the default values of k; and ky default to 0.8 and 0.31, respectively, though they may be changed by the user.

2.7.3 1 controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases the
prospective time step estimate entirely off of the current local error estimate,

e

By default, k; = 1, but that may be modified by the user.

2.7.4 Explicit Gustafsson controller

This step adaptivity algorithm was proposed in [37], and is primarily useful with explicit Runge—Kutta methods. In the
notation of our earlier controllers, it has the form

h1 51_1/p, on the first step,

n = (2.19)

X c ka/p
hn en 1/P <n> , on subsequent steps.
En—1

The default values of k1 and k5 are 0.367 and 0.268, respectively, and may be modified by the user.

2.7.5 Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge—Kutta methods was introduced in [38], and has the form

hlsl_l/p, on the first step,
. . “ka/p (2.20)
hy, (=) en /P <€n>) on subsequent steps.
hn—l En—1

The algorithm parameters default to k; = 0.98 and k2 = 0.95, but may be modified by the user.

38 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.3.0

2.7.6 ImEx Gustafsson controller

An ImEx version of these two preceding controllers is also available. This approach computes the estimates h) arising
from equation (2.19) and the estimate k), arising from equation (2.20), and selects

h
h' = o= min {[R], |5}
I
Here, equation (2.19) uses k; and ko with default values of 0.367 and 0.268, while equation (2.20) sets both parameters
to the input k3 that defaults to 0.95. All of these values may be modified by the user.

2.7.7 User-supplied controller
Finally, ARKODE’s time-stepping modules allow the user to define their own time step adaptivity function,
h' = H(y, thp, hn1,hn_2,6n,6n—1,En—2, q;p)v

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.8 Explicit stability

For problems that involve a nonzero explicit component, i.e. fZ(¢,y) # 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge—Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKODE adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which f¥(¢,%) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error toler-
ances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable number
of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller may
also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hn\) must reside within a bounded stability region, where)\ are the eigenvalues of the linearized operator 0¥ /Jy,
information on the maximum stable step size is not readily available to ARKODE’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f! may contain the stiff diffusive components and f¥ may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step hex, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Azx
hexp| < —
|3P‘ |>\‘

where Az is the spatial mesh size and X is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value for
|hexp| is supplied, it is