User Documentation for CVODES v6.3.0
SUNDIALS v6.3.0

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

August 10, 2022

agials

Q
<

w

UCRL-SM-208111

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker,
Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction 1
1.1 Historical Background e 1
1.2 Changes from previous Versions o v v v ittt e e e e e e e e 2
1.3 Reading this User Guide 0 i e e e e e e e 23
1.4 SUNDIALS License and Notices 0 i i i i it it e e e e e e e e 25
2 Mathematical Considerations 27
2.1 IVPsolution 27
22 IVPswithconstraints o e e 32
2.3 Preconditioning L e e 32
2.4 BDF stability limitdetection e 33
2.5 Rootfinding L. 34
2.6 Pure Quadrature Integration e e e e e e e e e 35
2.7 Forward Sensitivity Analysis L e e e e e 35
2.8 Adjoint Sensitivity Analysis oL e 39
2.9 Checkpointing scheme L e 40
2.10 Second-order sensitivity analysis Lo e 41
3 Code Organization 43
3.1 CVODES organization e 43
4 Using SUNDIALS 49
4.1 The SUNContext Type o o i e e e e e 49
4.2 SUNDIALS Status Logging o . e e e e e 53
4.3 Performance Profiling 57
4.4 SUNDIALS Version Information 60
4.5 SUNDIALS Fortran Interface e 61
4.6 Features for GPU Accelerated Computing 69
5 Using CVODES 73
5.1 Using CVODES for IVP Solution e e e 73
5.2 Integration of pure quadrature equations oo 134
5.3 Using CVODES for Forward Sensitivity Analysis 148
5.4 Using CVODES for Adjoint Sensitivity Analysis 177
6 Vector Data Structures 215
6.1 Description of the NVECTOR Modules e 215
6.2 Description of the NVECTOR operations v i v v ittt e 221
6.3 NVECTOR functionsused by CVODES et 233
6.4 The NVECTOR_SERIALModule. i 234
6.5 The NVECTOR_PARALLEL Module 237
6.6 The NVECTOR_OPENMP Module ettt e e 241
6.7 The NVECTOR_PTHREADS Module 245

10

6.8 The NVECTOR_PARHYP Module e
6.9 The NVECTOR_PETSCModule e
6.10 The NVECTOR_CUDA Module it i
6.11 The NVECTOR_HIPModule
6.12 The NVECTOR_RAJAModule et
6.13 The NVECTOR_SYCL Module e e
6.14 The NVECTOR_OPENMPDEV Module
6.15 The NVECTOR_TRILINOS Module it
6.16 The NVECTOR_MANYVECTORModule
6.17 The NVECTOR_MPIMANYVECTOR Module
6.18 The NVECTOR_MPIPLUSX Module o e e e
6.19 NVECTOR Examples et e e e e e e e e e

Matrix Data Structures

7.1 Description of the SUNMATRIX Modules it
7.2 Description of the SUNMATRIX operations
7.3 The SUNMATRIX DENSEModule
7.4 The SUNMATRIX_MAGMADENSE Module
7.5 The SUNMATRIX_ONEMKLDENSEModule,
7.6 The SUNMATRIX_BAND Module e
7.7 The SUNMATRIX_CUSPARSEModule
7.8 The SUNMATRIX_SPARSEModule
7.9 The SUNMATRIX_SLUNRLOC Module i
7.10 SUNMATRIX Examples e
7.11 SUNMatrix functions used by CVODES

Linear Algebraic Solvers

8.1 The SUNLinearSolver APL e
8.2 CVODES SUNLinearSolverinterface i it e .
8.3 The SUNLinSol_Band Module e e e
8.4 The SUNLinSol_Dense Module e e
8.5 The SUNLinSol_KLU Module e et e e e
8.6 The SUNLinSol_LapackBand Module
8.7 The SUNLinSol_LapackDense Module
8.8 The SUNLinSol_MagmaDense Module
8.9 The SUNLinSol_OneMkIDense Module i e et
8.10 The SUNLinSol_PCG Module e e e e e e e e e
8.11 The SUNLinSol_SPBCGS Module it i e
8.12 The SUNLinSol_SPFGMR Module i ittt e
8.13 The SUNLinSol_ SPGMR Module e e e e
8.14 The SUNLinSol_SPTFQMR Module ittt e e
8.15 The SUNLinSol_SuperLUDIST Module it
8.16 The SUNLinSol_SuperLUMT Module i
8.17 The SUNLinSol_cuSolverSp_batchQR Module
8.18 SUNLinearSolver Examples o e

Nonlinear Algebraic Solvers

9.1 The SUNNonlinearSolver API e
9.2 CVODES SUNNonlinearSolver interface
9.3 The SUNNonlinSol_Newton implementation
9.4 The SUNNonlinSol_FixedPoint implementation
9.5 The SUNNonlinSol_PetscSNES implementation

Tools for Memory Management
10.1 The SUNMemoryHelper API e

ii

10.2 The SUNMemoryHelper_Cuda Implementation
10.3 The SUNMemoryHelper_Hip Implementation
10.4 The SUNMemoryHelper_Sycl Implementation

11 SUNDIALS Installation Procedure
11.1 CMake-based installation e e e e e
11.2 Installed libraries and exported header files, .

12 CVODES Constants
12.1 CVODES input CONStants v v v v v v e et e e e e e e e e e e e e e e e e e
12.2 CVODES output Constants oot v v v ettt e e e e e e e e e

13 Appendix: SUNDIALS Release History
Bibliography

Index

447

449

453

iii

Chapter 1

Introduction

CVODES [53] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [37]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities. CVODES is a solver for stiff and nonstiff initial value problems (IVPs) for systems of ordinary
differential equation (ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at
LLNL in the past are VODE [13] and VODPK [16]. VODE is a general purpose solver that includes methods for both
stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems
that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [50]. VODPK is a
variant of VODE that uses a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear
systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness,
in the form of the user-supplied preconditioner matrix [14]. The capabilities of both VODE and VODPK have been
combined in the C-language package CVODE [21].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjuc-
tion with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [52], FGMRES (Flexible
Generalized Minimum RESidual) [51], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [57], TFQMR (Transpose-Free
Quasi-Minimal Residual) [30], and PCG (Preconditioned Conjugate Gradient) [32] linear iterative methods. As Krylov
methods, these require almost no matrix storage for solving the Newton equations as compared to direct methods. How-
ever, the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential
for an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct linear solver
methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES
as the best overall choice. However, users are encouraged to compare all options, especially if encountering conver-
gence failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number of
workspace vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace size.
FGMRES has an advantage in that it is designed to support preconditioners that vary between iterations (e.g. itera-
tive methods). PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organization has been
changed considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer
of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the
linear solver array. A second key feature is a separate module devoted to vector operations; this facilitated the extension

User Documentation for CVODES, v6.3.0

to multiprosessor environments with minimal impacts on the rest of the solver, resulting in PVODE [18], the parallel
variant of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE. Sensitivity analysis
capabilities, both forward and adjoint, have been added to the main integrator. Enabling forward sensititivity computa-
tions in CVODES will result in the code integrating the so-called sensitivity equations simultaneously with the original
IVP, yielding both the solution and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis,
most useful when the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called adjoint equations
backward in time. CVODES provides the infrastructure needed to integrate any final-condition ODE dependent on the
solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across the SUNDIALS
suite. The key feature of the N_Vector module is that it is written in terms of abstract vector operations with the
actual vector functions attached by a particular implementation (such as serial or parallel) of N_Vector. This allows
writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which can be user-
supplied), as well as allowing more than one N_Vector module to be linked into an executable file. SUNDIALS
(and thus CVODES) is supplied with serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel N_Vector
implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES. First, a general
movement away from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure, and
dynamic memory allocation features in C are extremely useful in software of this complexity. Finally, we prefer C
over C++ for CVODES because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Changes from previous versions

1.2.1 Changes in v6.3.0

Added the function CVodeGetUserData () to retrieve the user data pointer provided to CVodeSetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.2.2 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated SUNNonlinSolSetPrintLevel Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNon-
linSolSetPrintLevel_FixedPoint (), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSet-
InfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSet-
PrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLin-
SolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(),
SUNLinSolSetPrintLevel _SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSet-
InfoFile_** and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option
SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

2 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

Added the function CVodePrintAlIlStats() to output all of the integrator, nonlinear solver, linear solver, and other
statistics in one call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value
output files.

Added support for integrating IVPs with constraints using BDF methods and projecting the solution onto the con-
straint manifold with a user defined projection function. This implementation is accompanied by additions to user
documentation and CVODES examples. See CVodeSetProjFn() for more information.

Added the functions CVodeSetEtaFixedStepBounds(), CVodeSetEtaMaxFirstStep(), CVodeSetEtaMax-
EarlyStep(), CVodeSetNumStepsEtaMaxEarlyStep (), CVodeSetEtaMax (), CVodeSetEtaMin(), CVodeSetE-
taMinErrFail (), CVodeSetEtaMaxErrFail (), CVodeSetNumFailsEtaMaxErrFail (), and CVodeSetEtaCon-
vFail () to adjust various parameters controlling changes in step size.

Added the functions CVodeSetDeltaGammaMaxLSetup () and CVodeSetDeltaGammaMaxBadJac () to adjust the ~y
change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector NVector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions CVodeGetNumNonlinSolvConvFails(), CVodeGetNonlinSolvStats(),
CVodeGetSensNumNonlinSolvConvFails(), CVodeGetSensNonlinSolvStats(), CVodeGetStgrSensNum-
NonlinSolvConvFails(),and CVodeGetStgrSensNonlinSolvStats () where the number of nonlinear solver fail-
ures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed with a stale
Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure was not in-
cluded in the nonlinear solver failure count. These functions have been updated to return the total number of nonlinear
solver failures. As such users may see an increase in the number of failures reported.

The functions CVodeGetNumStepSolveFails (), CVodeGetNumStepSensSolveFails (), and CVodeGetNumStep-
StgrSensSolveFails() have been added to retrieve the number of failed steps due to a nonlinear solver fail-
ure. The counts returned from these functions will match those previously returned by CVodeGetNumNonlin-
SolvConvFails(), CVodeGetNonlinSolvStats(), CVodeGetSensNumNonlinSolvConvFails(), CVodeGet-
SensNonlinSolvStats(), CVodeGetStgrSensNumNonlinSolvConvFails(), and CVodeGetStgrSensNonlin-
SolvStats().

1.2.3 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.2. Changes from previous versions 3

User Documentation for CVODES, v6.3.0

1.2.4 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.2.5 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create () to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

4 Chapter 1. Introduction

https://github.com/LLNL/Caliper

User Documentation for CVODES, v6.3.0

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewlVithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

CVODES

Removed

Replacement

SUNBandLinearSolver

SUNLinSol_Band()

SUNDenseLinearSolver

SUNLinSol_Dense()

SUNKLU

SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering ()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1l SUNLinSol_SPBCGSSetMax1()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()

SUNSPFGMRSetMaxRestarts

SUNLinSol_SPFGMRSetMaxRestarts()

SUNSPGMR

SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1l SUNLinSol_SPTFQMRSetMaxl()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering()

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout

1.2. Changes from previous versions 5

User Documentation for CVODES, v6.3.0

the simulation.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-
SetJacEvalFrequency().

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name | New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS

SUN_MODIFIED_GS

CLASSICAL_GS

SUN_CLASSICAL_GS

ATimesFn SUNATimesFn

PSetupFn SUNPSetupFn

PSolveFn SUNPSolveFn

DlsMat SUND1sMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):
Deprecated Name New Name
CVSpilsSetLinearSolver CVodeSetLinearSolver
CVSpilsSetEpsLin CVodeSetEpsLin
CVSpilsSetPreconditioner CVodeSetPreconditioner
CVSpilsSetJacTimes CVodeSetJacTimes
CVSpilsGetWorkSpace CVodeGetLinWorkSpace
CVSpilsGetNumPrecEvals CVodeGetNumPrecEvals
CVSpilsGetNumPrecSolves CVodeGetNumPrecSolves
CVSpilsGetNumLinIters CVodeGetNumLinIters
CVSpilsGetNumConvFails CVodeGetNumConvFails
CVSpilsGetNum]TSetupEvals CVodeGetNum]JTSetupEvals
CVSpilsGetNumJtimesEvals CVodeGetNumJtimesEvals
CVSpilsGetNumRhsEvals CVodeGetNumLinRhsEvals
CVSpilsGetLastFlag CVodeGetLastLinFlag

continues on next page
6 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

Table 1.1 — continued from previous page

Deprecated Name

New Name

CVSpilsGetReturnFlagName

CVodeGetLinReturnFlagName

CVSpilsSetLinearSolverB

CVodeSetLinearSolverB

CVSpilsSetEpsLinB

CVodeSetEpsLinB

CVSpilsSetPreconditionerB

CVodeSetPreconditionerB

CVSpilsSetPreconditionerBS

CVodeSetPreconditionerBS

CVSpilsSetJacTimesB CVodeSetJacTimesB
CVSpilsSetJacTimesBS CVodeSetJacTimesBS
CVD1sSetLinearSolver CVodeSetLinearSolver
CVDlsSetJacFn CVodeSetJacFn
CVD1sGetWorkSpace CVodeGetLinWorkSpace
CVD1lsGetNumJacEvals CVodeGetNumJacEvals
CVD1lsGetNumRhsEvals CVodeGetNumLinRhsEvals
CVDlsGetLastFlag CVodeGetLastLinFlag

CVD1sGetReturnFlagName

CVodeGetLinReturnFlagName

CVDlsSetLinearSolverB

CVodeSetLinearSolverB

CVDlsSetJacFnB CVodeSetJacFnB
CVD1sSetJacFnBS CVodeSetJacFnBS
DenseGETRF SUND1sMat_DenseGETRF
DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS
DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1sMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUND1sMat_denseScale
denseAddIdentity SUNDlsMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1sMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS

continues on next page

1.2. Changes from previous versions

User Documentation for CVODES, v6.3.0

Table 1.1 — continued from previous page

Deprecated Name New Name

QRfact SUNQRFact

QRsol SUNQRsol
DlsMat_NewDenseMat SUND1sMat_NewDenseMat
DlsMat_NewBandMat SUND1sMat_NewBandMat
DestroyMat SUND1sMat_DestroyMat
NewIntArray SUNDlsMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1lsMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUNDlsMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenselMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUNDlsMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1lsMat_newIndexArray
newRealArray SUND1sMat_newRealArray
destroyArray SUNDlsMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.2.6 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See Chapter §8.9 for more details. This module is experimental and is subject to change from version
to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate that the next
call to SUN1inSolSolve will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

CVODES now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUN-
LinearSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-
related data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Added the function CVodeSetN1sRhsFn to supply an alternative right-hand side function for use within nonlinear
system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all

8 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

SUNDIALS packages utilize a zero initial guess.

1.2.7 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See Section §6.13 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See Section §8.8 for more details.

1.2.8 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.2.9 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA N_Vector implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer operation, and that the pointer returned by N_VGetDeviceArrayPointer is a valid CUDA device
pointer.

1.2.10 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.2. Changes from previous versions 9

User Documentation for CVODES, v6.3.0

1.2.11 Changes in v5.4.0

Added the function CVodeSetLSNormFactor to specify the factor for converting between integrator tolerances
(WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new functions CVodeComputeState, and CVodeGetNonlinearSystemData which advanced users might find
useful if providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The CVodeF function for forward integration with check-
pointing is now subject to a restriction on the number of time steps allowed to reach the output time. This is the same
restriction applied to the CVode function. The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps function. This change fixes a bug that could cause an infinite loop in the CVodeF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the SUNNonlin-
earSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retreived by
calling CVodeGetNumNonlinSolvIters, CVodeGetSensNumNonlinSolvIters, CVodeGetStgrSensNumNonlin-
SolvIters, the cumulative number of failures with CVodeGetNumNonlinSolvConvFails, CVodeGetSensNumNon-
linSolvConvFails, CVodeGetStgrSensNumNonlinSolvConvFails, or both with CVodeGetNonlinSolvStats,
CVodeGetSensNonlinSolvStats, CVodeGetStgrSensNonlinSolvStats.

A minor inconsistency in checking the Jacobian evaluation frequency has been fixed. As a result codes using using
a non-default Jacobian update frequency through a call to CVodeSetMaxStepsBetweenJac will need to increase the
provided value by 1 to achieve the same behavior as before. For greater clarity the function CVodeSetMaxStepsBe-
tweenJac has been deprecated and replaced with CVodeSetJacEvalFrequency. Additionally, the function CVode-
SetLSetupFrequency has been added to set the frequency of calls to the linear solver setup function.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs such
as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA modules that
accept a SUNMemoryHelper object. Refer to §4.6.1, §10, §6.10 and §6.12 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.2.12 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

10 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

Added the optional functions CVodeSetJacTimesRhsFn and CVodeSetJacTimesRhsFnB to specify an alternative
right-hand side function for computing Jacobian-vector products with the internal difference quotient approximation.

1.2.13 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Fixed a memory leak from not deallocating the atol1Smin® and atolQSmin® arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implementation
from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has been updated
to use this matrix, therefore, users of this module will need to update their code. These modules are still considered to
be experimental, thus they are subject to breaking changes even in minor releases.

The functions CVodeSetLinearSolutionScaling and CVodeSetLinearSolutionScalingB were added to enable
or disable the scaling applied to linear system solutions with matrix-based linear solvers to account for a lagged value
of v in the linear system matrix I — ~J. Scaling is enabled by default when using a matrix-based linear solver with
BDF methods.

1.2.14 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose () for creating/destroying file pointers
that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accelera-
tion.

1.2.15 Changes in v5.0.0

Build system changes

* Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as
SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path
to the BLAS library should be included in the variable for the third party library e.g., SUPERLUDIST_LIBRARIES
when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.
NVECTOR module changes

1.2. Changes from previous versions 11

User Documentation for CVODES, v6.3.0

Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty ()
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
be set. Additionally, the function N_VCopyOps () has been added to copy the operation function pointers be-
tween vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.2 for more details.

Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have been cre-
ated to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accom-
panied by additions to user documentation and SUNDIALS examples. See §6.16 and §6.17 for more details.

One new required vector operation and ten new optional vector operations have been added to the N_Vector API.
The new required operation, , returns the global length of an . The optional operations have been added to support
the new NVECTOR_MPIMANYVECTOR implementation. The operation must be implemented by subvectors that are
combined to create an NVECTOR_MPIMANYVECTOR, but is not used outside of this context. The remaining nine
operations are optional local reduction operations intended to eliminate unnecessary latency when performing
vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vec-
tor operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VLINormLocal (), N_VWSqrSumLocal (),
N_VWSqrSumMaskLocal (), N_VInvTestLocal (), N_VConstrMaskLocal (), N_VMinLocal(),and N_VMin-
QuotientLocal (). If an N_Vector implementation defines any of the local operations as , then the NVEC-
TOR_MPIMANYVECTOR will call standard N_Vector operations to complete the computation.

An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.18 for more details.

The and functions have been removed from the NVECTOR_CUDA and NVECTOR_RAJA implementations re-
spectively. Accordingly, the nvector_mpicuda.h, libsundials_nvecmpicuda.lib, libsundials_-
nvecmpicudaraja.lib, and files have been removed. Users should use the NVECTOR_MPIPLUSX module cou-
pled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The nec-
essary changes are minimal and should require few code modifications. See the programs in and for examples of
how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10 for more details.

Added new Fortran 2003 interfaces for most N_Vector modules. See §6 for more details on how to use the
interfaces.

Added three new N_Vector utility functions N_VGetVecAtIndexVectorArray (), N_VSetVecAtIndexVec-
torArray(), and N_VNewVectorArray () for working with arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMat-

NewEmpty () allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers
in the operations structure initialized to . When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNMatrix API by ensuring only required operations need
to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function pointers
between matrix objects. When used in clone routines for custom matrix objects these functions also will ease the

12

Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

introduction of any new optional operations to the SUNMatrix API by ensuring all operations are copied when
cloning objects. See §7 for more details.

* A new operation, SUNMatMatvecSetup (), was added to the SUNMatrix API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
structure member to NULL. See §7.2 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indiciating success/failure may return different values than previously. See §7.2.1 for more
details.

* A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

¢ Added new Fortran 2003 interfaces for most SUNMatrix modules. See §7 for more details on how to use the
interfaces.

SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor allocates an
“empty” generic SUNLinearSolver with the object’s content pointer and the function pointers in the operations
structure initialized to . When used in the constructor for custom objects this function will ease the introduction
of any new optional operations to the SUNLinearSolver API by ensuring only required operations need to be
set. See §8.1.8 for more details.

* The return type of the SUNLinearSolver API function has changed from to to be consistent with the type used
to store row indices in dense and banded linear solver modules.

e Added a new optional operation to the SUNLinearSolver API, SUNLinSolLastFlag(), that returns a for
identifying the linear solver module.

* The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

* A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

* Added a new SUNLinearSolver implementation, SUNLINEARSOLVER _CUSOLVERSP, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

¢ Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic(),, SUN-
LinSol_KLUGetNumeric() and SUNLinSol_KLUGetCommon (), to provide user access to the underlying KLU
solver structures. See §8.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See §8 for more details on how to use
the interfaces.

SUNNonlinearSolver module changes

* A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUN-
NonlinSolSetConvTestFN() allocates an “empty” generic SUNNonlinearSolver with the object’s content
pointer and the function pointers in the operations structure initialized to . When used in the constructor for cus-
tom objects this function will ease the introduction of any new optional operations to the SUNNonlinearSolver
API by ensuring only required operations need to be set. See §9.1.7 for more details.

* To facilitate the use of user supplied nonlinear solver convergence test functions the function in the SUNNonlin-
earSolver API has been updated to take a data pointer as input. The supplied data pointer will be passed to the
nonlinear solver convergence test function on each call.

1.2. Changes from previous versions 13

User Documentation for CVODES, v6.3.0

 The inputs values passed to the first two inputs of the function SUNNonlinSolSolve() in the SUNNonlinear-
Solver have been changed to be the predicted state and the initial guess for the correction to that state. Ad-
ditionally, the definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlin-
earSolver API have been updated to remove unused input parameters. For more information on the nonlinear
system formulation see §9.2 and for more details on the API functions see §9.

* Added a new SUNNonlinearSolver implementation, SUNNONLINSOL_PETSC, which interfaces to the PETSc
SNES nonlinear solver API. See §9.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNNonlinearSolver modules. See §4.5 for more details on how
to use the interfaces.

1.2.15.1 CVODES changes

* Fixed a bug in the CVODES constraint handling where the step size could be set below the minimum step size.

* Fixed a bug in the CVODES nonlinear solver interface where the norm of the accumulated correction was not
updated when using a non-default convergence test function.

¢ Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused
vector scale operation stopped one iteration early.

* Fixed a bug where the CVodeF function would return the wrong flag under certrain cirumstances.

* Fixed a bug where the CVodeF function would not return a root in CV_NORMAL_STEP mode if the root occurred
after the desired output time.

¢ Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario, CVODES will remove at least
one global reduction per time step.

e The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

* A new linear solver interface function CVLsLinSysFn was added as an alternative method for evaluating the
linear system M = I — vJ.

¢ Added new functions, CVodeGetCurrentGamma, CVodeGetCurrentState, CVodeGetCurrentStateSens,
and CVodeGetCurrentSensSolveIndex which may be useful to users who choose to provide their own non-
linear solver implementations.

* Added a Fortran 2003 interface to CVODES. See Chapter §4.5 for more details.

1.2.16 Changes in v4.1.0

An additional N_Vector implementation was added for the TPETRA vector from the Trilinos library to facilitate inter-
operability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file cvodes_impl .his no longer installed. This means users who are directly manipulating
the CVodeMem structure will need to update their code to use CVODES’s public API.

Python is no longer required to run make test and make test_install.

14 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

1.2.17 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the CVODES library, 1ibsundials_cvodes.

1.2.18 Changes in v4.0.1

No changes were made in this release.

1.2.19 Changes in v4.0.0

CVODES?’ previous direct and iterative linear solver interfaces, CVDLS and CVSPILS, have been merged into a single
unified linear solver interface, CVLS, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how CVLS utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in Chapter §8. All CVODES example programs and the standalone linear solver examples
have been updated to use the unified linear solver interface.

The unified interface for the new CVLS module is very similar to the previous CVDLS and CVSPILS interfaces. To
minimize challenges in user migration to the new names, the previous C routine names may still be used; these will be
deprecated in future releases, so we recommend that users migrate to the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names
are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense,
SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUN-
LinSol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges
in user migration to the new names, the previous routine names may still be used; these will be deprecated in fu-
ture releases, so we recommend that users migrate to the new names soon. All CVODES example programs and the
standalone linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNonlin-
earSolver API This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNonlinearSolver API and SUNDIALS provided modules are described in Chapter §9
and follow the same object oriented design and implementation used by the N_Vector, SUNMatrix, and SUNLinear-
Solver modules. Currently two SUNNonlinearSolver implementations are provided, SUNNONLINSOL_NEWTON and
SUNNONLINSOL_FIXEDPOINT. These replicate the previous integrator specific implementations of a Newton iteration
and a fixed-point iteration (previously referred to as a functional iteration), respectively. Note the SUNNONLINSOL_-
FIXEDPOINT module can optionally utilize Anderson’s method to accelerate convergence. Example programs using
each of these nonlinear solver modules in a standalone manner have been added and all CVODES example programs
have been updated to use generic SUNNonlinearSolver modules.

With the introduction of SUNNonlinearSolver modules, the input parameter iter to CVodeCreate has been re-
moved along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. Instead of
specifying the nonlinear iteration type when creating the CVODES memory structure, CVODES uses the SUNNON-
LINSOL_NEWTON module implementation of a Newton iteration by default. For details on using a non-default or user-
supplied nonlinear solver see Chapters §5.1, §5.3, and §5.4. CVODES functions for setting the nonlinear solver options
(e.g., CVodeSetMaxNonlinIters) or getting nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) re-
main unchanged and internally call generic SUNNonlinearSolver functions as needed.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an N_Vector

1.2. Changes from previous versions 15

User Documentation for CVODES, v6.3.0

(see Chapter §6 for more details). The new operations are intended to increase data reuse in vector operations, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with ac-
celerators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an N_Vector implementation defines any of these operations as NULL, then
standard N_Vector operations will automatically be called as necessary to complete the computation. Multiple updates
to NVECTOR_CUDA were made:

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.

* Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

¢ Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPEN-
MPDEV. See §6.14 for more details. Two changes were made in the CVODE/CVODES/ARKODE initial step size
algorithm:

1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

1.2.20 Changes in v3.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can modified.

16 Chapter 1. Introduction

User Documentation for CVODES, v6.3.0

1.2.21 Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. See Chapter §2 and the description of CVodeSetConstraints () for more details. Use of CVodeSet-
Constraints requires the N_Vector operations N_MinQuotient, N_VConstrMask, and N_VCompare that were not
previously required by CVODE and CVODES.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA N_Vector library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
* CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

* The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPTEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.2.22 Changes in v3.1.2

The changes in this minor release include the following:

» Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

* Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

* Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

» Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

» Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally
handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is

1.2. Changes from previous versions 17

User Documentation for CVODES, v6.3.0

still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~vJ manually (with zero
entries if needed).

Added new example, cvRoberts_FSA_dns_Switch.c, which demonstrates switching on/off forward sensitiv-
ity computations. This example came from the usage notes page of the SUNDIALS website.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpils